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AB STRACT

The recent trend towards higher levels of automation in complex systems,
such as in nuclear power plants, air-traffic control and flight management, is
changing the role of the human operator from one of a controller to one of a
supervisory decision-maker. The operator's primary responsibility in this new
role is to extract information from his environment, and to integrate it for
action selection and its implementation. The present analytic and experimental
research has sought to understand human monitoring, information-processing and

task selection procedures in dynamic multi-task environments, as a preliminary
step towards analyzing and evaluating the human component of a supervisoryI control system.

A simple yet realistic computer representation of the supervisory decision
* situation is developed. The experimental paradigm retains the essence of the
j multi-task decision problem by presenting the human with a dynamic situation

wherein tasks of different value, time requirement and deadline compete for his
attention. Via this framework, the effects of various task related variables
on the human decision-processes are studied.

A normative dynamic decision model (DDM) of human task sequencing perfor-
mance is developed. The analytic framework of the DDM is based on modernI control, estimation and semi-Markov decision process theories, which provide
a general methodology for analyzing dynamic decision-making under uncertainty.
Two novel features of DDM are its explicit incorporation of human limitations,I such as reaction time delays, randomness, limited resolving power and limited
information-processing capacity, and its suitability to assimilate new elements
of the decision task as they become considered and understood. Also, the

I analytic framework of the DDM has been shown to subsume several problems in
single-processor sequencing theory, Markov decision theory and priority queueing
systems.

In order to validate the model, several time-history and scalar measures
of performance are proposed. Excellent model-data agreement is obtained for
all the experimental conditions studied. Moreover, the model has been shown to
represent human decision behavior significantly better than several heuristic
sequencing rules of scheduling theory. The model has the potential for use in

t * computer-aiding, and could form a significant step towards 
the modeling of multi-

human behavior in complex, multi-level, multi-task systems.
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I. INTRODUCTION AND PROBLEM FORMULATION

An emerging trend in man-machine systems appears to be away from

manual control to partial, if not full, automation. In this regard, the

role of the human operator is shifting from one of a direct system con-

I troller to that of a monitor of multiple tasks, or a supervisor of sev-

~ I eral semi-automated subsystems. The operator's primary task in these

systems is to extract information from his environment, and integrate

I this information for action selection and implementation. In this con-

text, monitoring, information-processing and dynamic (real-time) deci-

sion-making skills of the human operator gain prominence over his sensor/

motor skills. In order to properly analyze and evaluate the human com-

ponent of a supervisory control system, an understanding of the human

limitations and capabilities as an information-processor and dynamic

4t decision-maker is essential.

There are two feasible paths that one can follow to develop human

operator decision models, supported by concomitant experimental results,

in complex supervisory control systems. The first approach starts with

one task (or subsystem) and several humans to explore information-

", sharing and inter-human dynamics, and then adds more tasks (or subsys-

* tems). The second approach begins by studying single human dynamic

decision-making among multiple tasks, and next introduces multiple

decision-makers, composed of human and, possibly, non-human decision-

I makers. The latter route is advocated in this effort.

The present research seeks to understand human information-process-

I Ing and task selection procedures in dynamic multi-task environments.
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The approach is to assimilate the results of a joint experimental and

U analytic program into a normative dynamic decision model (DDM) of human

task sequencing performance. To this end, a general multi-task decision

problem is considered wherein tasks of different value, duration and

* g deadline compete for the operator's attention. This situation occurs

in targeting selection, air-traffic control, multiple remotely piloted

* 1 vehicle (m-RPV) control, process control, power system regulation, pro-

duction scheduling, as well as in many other supervisory control sys-

I tems. The model that has emerged may be viewed as a basic building block

J in the comprehensive understanding of decision-making procedures, an

understanding that could facilitate the modeling of multi-human behavior

* in complex, multi-level, multi-task systems.

1.1 Multi-task Decision Problem

We believe that a complete theory of human behavior in multi-task

systems, analogous to Edwards' classification of human response theory

[1), should consist of three parts: (i) a theory of how potential tasks

are identified for consideration; (ii) a theory of the process of con-

sideration by which all tasks but one are eliminated; and (iii) a theory

about how the chosen task is executed. The last topic involves the

study of human implementation skills, which are of secondary importance

in supervisory control situations. The first topic, that of identifying

1 potential tasks for consideration, is the problem of creative thinking,

of which little of significance is known at present. However, this may

1 not be restrictive in most multi-task systems of the type discussed

g above. In these systems, the tasks are immediately identified, e.g.,

once a target is detected. The topic of selecting a task for action

from amongst many candidate tasks involves monitoring, information-
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processing and dynamic (real-time) decision-making, and is the problem

of interest here.

Fig. 1 shows the fundamental decision-loop that is addressed in

this work. The human decision-process involves 1) whether to process a

I task or gather more information (i.e., monitor); and 2) which of N tasks

(N is time-varying) to act upon in order to maximize the system perfor-

mance (e.g., maximize reward, minimize regret, etc.). The decision-loop

is dynamic in nature. As time evolves, tasks of different value, dura-

tion (processing time) and opportunity window (deadline) demand human's

attention, while others depart. The opportunity windows shrink with

time as the tasks approach their deadlines.

In the following, we provide a taxonomy for behavioral decision

theory and show that the multi-task decision problem (MTDP) belongs to

I the most general class of decision-processes studied to date, viz., the

semi-Markov decision processes (SMDP). We also summarize the results of

a major literature survey on behavioral decision theory [2), and criti-

cally evaluate the previous (albiet limited) research on multi-task deci-

sion-making, in order to put the nature of the present work in perspec-

* I tive.

1.2 A Taxomony for Behavioral Decision Theory

A decision-maker's (DM's) choice in any decision task is a conse-

f quence of what he can do, what he knows and what he wants (31. "What he

can do" represents the alternatives (possible responses) available to the

DM. "What he knows" refers to the information that DM has of the deci-

sion situation. This can range from the deterministic situations where

all the relevant variables of the decision process are known, to the

highly probabilistic situations where little information is available
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about any variable of interest. Finally, "what he wants" pertains to

the DM's perception of the task objectives and his preferences for the

various outcomes of a decision. These three concepts are fundamental to

i every decision-making process.

Most theories of individual choice behavior can be conveniently

dichotomized into two distinct classes depending on the nature of the

decision task, viz., single-stage and multi-stage decision theories. A

detailed classification of individual choice theories is shown in

I Fig. 2 and is clarified below.

i INDIVIDUAL CHOICE THEORY]

rp

SINGLE-STAGE DECISION THEORY jj MULTI-STAGE DECISION THEORY

(E,D,r) (S,E,V,T,r)

DYNAMIC DECISION THEORYSEQUENTIAL DECISION THEORY

(controlled decision process) (uncontrolled decision

" MARKOV DECISION THEORY SEMI-MARKOV OR MARKOV RENEWAL

(stage duration is deterministic DECISION THEORY

or irrelevant) (stage duration is random with
known distribution)

Legend: S = set of states of the system

E = set of events

D - set of possible actions

T = transformation rule

r = reward function

4i FIG. 2: A CLASSIFICATION OF INDIVIDUAL CHOICE THEORIES

1.2.1 Single-Stage Decision Theory

YA single-stage or static decision process may be represented as

in Fig. 3.

1
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I

I(Decisions)D E(Events)

I DECISION TASK

4 r(Reward)

FIG. 3: FLOW DIAGRAM OF A SINGLE-STAGE DECISION PROCESS

I We see that a static decision process can be conveniently characterized

by the triple (E,D,r) where

E E = {e) = a finite non-empty set of external events (also known as

states of nature, stimuli, hypotheses or diagnoses)

I V = {d} = a finite, non-empty set of possible decisions representing

I "What he can do" (also commonly referred to as alterna-

tives, responses, or actions).

.'r =r(e,d)=a reward (return) uniquely associated with the combined

occurance of event, e, and decision, d.

. Single-stage decision-making problems can be further classified into two

categories depending on the information that the DM possesses (i.e.,

"What he knows") about E. These are decisions with certainty (riskless)

1 and decisions with uncertainty (under risk). In the former category,

each decision guarantees a reward with certainty, i.e., E is completely

known. In the latter category, only a probability can be assigned to

each ecE such that E p(e) - 1.

I The mechanics of a static decision problem are as follows: the DM

chooses and executes a decision, d; an event, e, occurs; he receives a

I' I



reward, r(ed), determined by the joint oecurance of the event, e, and

decision, d; and his decisions are mutually independent, I.e., he never

makes another decision based on vhatever he may have learned. It is

frequently assumed that the DM chooses his decision to maximize the

expected reward to minimize regret (i.e., "what he wants'). The widely

studied single-choice gambling paradigms are examples of single-stage

decision tasks.

1.2.2 Multi-Stage Decision Theory

In single-stage decision-making, the DM must make a single choice

from among a number of alternatives. But in most man-machine and organ-

izational systems, the DM seldom makes a single isolated decision. These

situations require that the DM evaluate a number of objects or hypotheses

simultaneously as the evidence accumulates sequentially and/or that he

make several interdependent decisions. Thus, an understanding of human

behavior in multi-stage decision-processes is fundamental to modeling

human behavior in dynamic and uncertain environments.

In a multi-stage decision process, the DM makes a sequence of deci-

sions. These types of processes consist of a series of stages such that

the output of one stage becomes the input to the succeeding stage. Fig.

4 is representative of a multi-stage decision process [4].

I. 2 0 2i - -Hi -HI N- -N-

-i+ N- . -NI
ri rI+I rN-1

I FIG. 4: FLOW DIAGRAM OF AN N-STAGE DECISION PROCESS

I
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Referring to Fig. 4, a multi-stage decision process can be characterized

by the pentad (S,V,E,Tr) where

S - {s} - set of states of the system

SV = {d t} - set of possible decisions

E - {ei - set of events

T - (t - set of transformation rules (laws of motion or transition

I functions) that describe the changes in state at each

stage i

r - r - set of rewards associated with each state transition

The stage-to-stage state transition is governed by the transformation

rule

[~~~~ (1- %'-_- l1)

The reward at stage i is

ri a r i (-k ' d,, _t+, )  " ri ( ' Ej, d ) (1.2)

The DM's information can range from complete knowledge of the event set,

{eil, and the set of transformation rules, {tl }, to little or no know-

ledge of these variables. Notice that the transformation rule, ti, and

the reward,r1 , can be stage dependent (i.e., non-stationary). It is

commonly assumed that the DM chooses his decisions to maximize his

*i expected reward over N stages. The horizon N may or may not be known to

the DM.

4 In studying multi-stage decision processes, a distinction is often

maintained between sequential and dynamic decision processes (see Fig.

1 2). In sequential decision problems, the evolution of the state of the

system g is independent of the DM's decisions. That is, Eq. (1.1)

becomes

l 'l' l l (,la e (1. 3)

pM '

t;: I
°I
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Thus, a sequential decision task is an uncontrolled decision process.

It consists of a sequence of static decision problems repeated periodi-

cally and independently. The information gained from earlier decisions

I useful in making later decisions, but the earlier decisions do not

affect the transformation rule, -. The operation of a sequential

decision process is as follows: given that the system is in state E at

the beginning of a stage i, the DM makes a decision, d, the system moves

to state 2+1 (which may or may not be identical to 2) according to the

transformation rule, and the DM receives a reward ri(s, d asso-

ciated with this transition. Examples of sequential decision tasks are

Isystem failure detection, revision of opinion, display monitoring, asset
selling and optional stopping.

The dynamic decision processes are multi-stage decision tasks in

which the stage-to-stage changes in the state of the system are directly

affected by the DM's previous decisions, as well as by environmental

factors (events) over which the DM exercises no control (see Eq. (1.1)),

i.e., it is a controlled decision process. The set of alternatives and

the information available at later stages are contingent upon earlier

decisions. Thus, the DM has to consider the effect of each of his

- decisions on the future states of the system and, consequently, on his*I
I future decisions. The dynamic decision processes can be further classi-

b

fied into two categories, viz., Markovian and semi-Markovian (see Fig.

2). The Markov decision process (MDP) has the property that the stages

are of deterministic duration, or their duration is irrelevant to the

decision problem. Multi-stage betting games, inventory control, search

theory and resource allocation are examples of MDP.

S I The semi-Markov decision process (SMDP), or Markov renewal decision

process, is characterized by the fact that the time between state tran-

ONE
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sitions is a random variable. The decision epochs in a stationary SMDP

9 are the times of state transitions. At a decision epoch i, the system is

in state E. The DM chooses a feasible decision, d; the system moves to

I state a+l after a random holding time, Ti, according to the transforms-

tion rule; and the DM receives a reward r , d , T, associated

with this transition. The process continues for finite or infinite time.

A complete characterization of a semi-Markov decision process includes

the hexad (S,D,E,THr) where S,D,E,T and r are as defined earlier, and

H is a holding time function that determines how long the system stays in

a given state before making a transition to another specified state. The

process descriptors (S,D,E,T,H,r) can be time dependent. The non-stationa-

rity of the decision process can enter either in the form of time depend-

ent dimension of the spaces (S,V,E), or in the form of time varying nature

of the transformation rules, T; the holding time functions H; and the

reward structure, r. If a process is a non-stationary SMDP, the nota-

tion (S(t), D(t), E(t), T(t), H(t), r(t)) is employed to emphasize its

time dependence. Here, the decisions are, in general, continuous func-

tions of time. Some examples of SMDP are targeting selection, ai-traffic

control, multi-RPV control, industrial process control, power system

.- regulation and many other multi-task systems. The analysis of these

4systems is arduous, in view of the non-stationarity of the underlying

ai SMDP. Virtually no significant research has been done by behavioral

decision theorists using semi-Markov decision paradigms.

1.3 Summary of Research on Behavioral Decision Theory [21

A brief and selective overview of the theories of individual choice

behavior in static and multi-stage decision tasks was provided earlier

I in [2]. The primary purpose of this review was to investigate the appli-

cability of this boey of knowledge to model human information-processing

1



and decision-making skills in multi-task systems. The main conclusion

was that the multi-tadk decision problems are more general than any

considered in behavioral decision theory to date. However, there exist

I bits and pieces of relevant models and a wide range of experimental liter-

ature that may be useful in modeling human behavior in multi-task systems.

Specifically, the following observations of the review are relevant to

I our discussion. The reader is referred to [2) for additional details.

1.3.1 Single-stage Decision-making

~. I Most of the literature on behavioral decision theory is devoted to

single-stage (static) decision-making under risk. The models of risky

decision behavior may be characterized by two alternative descriptions

of the decision task. The first modeling approach, rooted in mathematics

and economics, describes the decision task in terms of probability dis-

tributions over sets of outcomes (events) with little or no attention

paid to the underlying psychological processes of the individual DM.

This approach led to such moment-based models as the Expected Value (EV),

the Expected Utility (EU), the Subjectively Expected Utility (SEU), and

the Risk Preference models. The second modeling approach, rooted mainly

* in psychology, characterizes decision tasks in terms of multi-dimensional

stimuli. It assumes that each stimulus forms a basic risk dimension, and

that the DM integrates these dimensions into a judgement or decision.

7; J Thus, this approach led to explanatory models that view decision-making

under risk as a form of information-processing behavior.

I The dominant moment based model for single-stage decision-making is

the subjectively expected utility (SEU) model proposed by Edwards (51.

p In this model, the DM is assumed to maximize the subjectively expected

utility of an alternative, d, given by
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S EU (d) PS p(e) U[r(e,d)] (1.4)

eeE

where p (e) is the subjective (perceived) probability of the event, e;

and Ufr(e,d)] is the subjective value (utility) function of the event, e.

En assessing the potential application of moment related versus

multi-dimensional stimuli models to static decision-making under risk, the

following observation was made in [2]: for normative (predictive) pur-

I poses, models based on moments can serve as a first approximation or as a

I formal standard against which to compare actual performance.

1.3.2 Multi-Stage Decision-Making

j The existing literature on multi-stage decision-making problems

may be grouped under three headings: sequential statistical inference,

optional stopping and dynamic decision-making. The topic of statistical

inference is concerned with the information-processing (diagnostic)

ability of the humans, i.e., the human's ability to assess and revise

probabilities. The optional stopping problem combines information-pro-

cessing with simple (usually binary) action selection. Finally, the

existing literature on dynamic decision-making Is mainly concerned with

I action (control) selection with very little or no consideration to the

aspect of information-processing. It should be emphasized that virtually

I no significant research has been done by behavioral decision theorists

uigra-time decision paradigms.

I The literature in the area of sequential probability inference

I shows two different approaches to the modeling problem. The first

approach, advanced by statisticians and psychologists, employs Bayes'

rule as a normative representation of how a DM should revise his probabi-

P lity estimates in light of new information. This approach led to the

* I 6.udy of "conservatiLsm" - a suboptimal human behavior that produces
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posterior probabilities nearer to the prior probabilities than those

Ispecified by Bayes' rule. The second approach, proposed mainly by psy-

chologists, argues that the human is a selective, sequential information-

processor with limited capacity and that this leads him to apply simple

heuristics and cognitive strategies. This approach led to the discovery

I of such judgemental heuristics as representativeness, availability, and

I adjustment and anchoring, which were found to determine probabilistic

inferences in many tasks. However, these findings can only be described

I in qualitative terms and, as yet, no quantitative descriptive theory based

on heuristics has emerged.

The optional stopping problem is related to information-seeking

ability of the human. In this problem, the DM is provided with an option,

at each stage of the process, to seek (purchase, sample) one more obser-

vation, or to stop and make the terminal decision. Virtually all the

models of optional stopping are normative in construct. They were

developed within the Bayesian framework using the subjectively expected

loss of the sequential decision process as the minimizing criterion of

performance. In model-data comparisons, it was found that all the rele-

= vant procedural variables (e.g., pay-offs, prior probabilities, etc.)

* strongly influenced the number of observations, but not as much as the

I normative model predicted. It was also found that the optimal expected

1 loss was quite insensitive to large deviations in the optimal decision

policy ("curse of insensitivity").

The dynamic decision-making problems have not been studied as

extensively as the static or sequential decision-making problems. This

I is due, mainly, to their inherent complexity, analytic sophistication

I 34nd difficulties in implementing experiments on a computer. Most of the

dynamic decision paradigms considered to date are taken from other fields
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U such as economics and operations research. Typically, the modeling

g approach begins with a normative construct based on dynamic programing,

and then includes human limitations and constraints to produce normative-

descriptive models. A commn approach to the derivation of a normative-

descriptive model is to first compare observed behavior with that pre-

I scribed by the normative (truly optimal) model. The discrepancies are

then interpreted either in terms of limitations on the information-pro-

cessing capacity or the human's misperception of the task. The limita-

I tion on the information-processing capacity can be linked to the DM's

finite memory, his limited ability to project the effects of his present

I decisions into the future, his limited attention span, loss of decision

time, misaggregat ion of data, etc. The limitation due to misperception

of the task can be handled by postulating non-isomorphic internal models

and differing subjective and objective cost functionals. The optimal

decision policy is obtained under these cognitive and perceptual con-

straints, and then compared with the actual behavior. However, at pre-

a sent there does not exist a systematic method of identifying the human

limitations beyond the current psychological knowledge. Moreover, the

dynamic decision-making models, like those of optional stopping, are

- plagued with the "curse of insensitivity", i.e., optimal expected loss is

* J. insensitive to large deviations in the optimal decision strategy.

a In assessing the potential application of the existing behavioral

decision models to the MTDP, we conclude that none of them address the

* I real-time decision-making issue of the MTDP. However, there exists a

rich experimental literature which can provide insights and ideas into

I the nature of human limitations in information-processing and decision-

making contexts. These issues are explored in section 1.6.



1.4 Multi-Task Decision-Makingt 
1

Sheridan's work on the optimal allocation of personal presence [6]

might be thought of as a preliminary step towards human modeling in a

I multi-task context. In this work, Sheridan was concerned with the dyna-

mic human choice between two alternatives, viz., direct presence by trans-

porting himself from one location to another, or vicarious presence via

commnication. He employed a dynamic programming formulation to obtain

optimal decisions over the planning horizon, with states being the loca-

tions to be considered.

* Rouse and Greenstein [7] pose the multi-task decision problem in

terms of event detection and attention allocations. They considered a

multi-task paradigm in which the subjects are presented with the process

histories of several dynamic systems, and are instructed to detect process

failures and react to them as quickly as possible. Rouse and Greenstein

moxdel human event (failure) detection by generating conditional proba-

bilities of event occurrences, given the observation set, via discriminant

analysis. The attention allocation problem was formulated in the frame-

work of a single server queueing model with the object of minimizing the

- I weighted expected waiting time, i.e., unlike the multi-task decision

4 1 paradigm of our work, the tasks, in Rouse and Greenstein's study, stay in

I the queue until they are acted upon by the DM. They note the application

I of the model to computer-aiding, but the theoretical as well as experi-

mental results are inconclusive.

I Tulga (8] formulated the multi-task decision problem in the frame-

work of a dynamic, deterministic, single machine-sequencing model. In

Tulga's paradigm, the tasks are represented by rectangles of varying

I height (value density) and width (task duration, processing time).

Tasks appear randomly in time and position and move at a constant velo-
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city towards a dead-line. The subject's task is to attend to one task

at a time and thus cause that tasks' width to collapse uniformly and, one

hopes, to disappear before the task reaches the dead-line. The reward

I earned is the aggregate reduction in the areas of all tasks. Assuming

I stationary task parameters, open-loop feedback optimal (OLFO) decision

policy was obtained by solving a deterministic optimization problem every

time a new or expected task arrives, and every time a task is completed.

Dynamic programming with branch and bound strategies was employed to

I solve the resulting optimization problem.

The studies of Tulga, and of Rouse and Greenstein are particularly

germane to the present research as they exemplify two of the most popular

I modeling approaches to the multi-task decision problem (MTDP), viz.,

sequencing (combinatorial) and queueing-theoretic approaches. In section

1.6, we address at some of the limitations of these two approaches to the

MTDP and indicate how we have overcome their shortcomings via a semi-

Markov decision process (SNDP) approach.

1.5 Experimental Paradigm

The primary focus of this research effort is on human information-

I processing and dynamic decision-making behavior in multi-task situations.

In order to minimize extraneous complexities, such as intricate task

structure, resource zonstraints, etc., we have considered a simple, yet

J realistic, computer controlled experimental set-up shown in Fig. 5

This experimental paradigm is a modified version of the one used 1-y Tulga

1 [8]. In the experiments, the subjects observe a CRT screen on which

multiple, concomitant tasks are represented by moving rectangualr bars.

The bars appear at the left edge of the screen and move at different

I velocities to the right, disappearing upon reaching the right edge.

Thus, the screen width represents an "opportunity window". In the pre-
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Fij. 5: EXPERIMENTAL APPARATUS

sent experimental paradigm, there can be, at most, a total of five tasks

on the CRT screen, with a maximum of one on each line. This number is

commensurate with the results of Miller [9] on the limitations of human

ainformation-processing capacity.

The height (reward, value) of each bar is either one, two or three

units. The number of dots (l<m<5) displayed on a bar represents the time

(in seconds) required to process the task. The subject may process a

task by holding down the appropriate push-button as in Fig. 5. By pro-

cessing a task successfully, the subject is credited with the correspond-

ing reward (ri < 1, 2 or 3), and the completed task is eliminated from

the screen. However, no partial credit is given.

Tue above experimental framework retains the essential features of

the multi-task decision problem in a manageable, yet manipulative, con-
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Utext. Using this formulation, the effects of key task variables on

human decision-processes are studied via the following five experimental

conditions:

I Mi Condition A: Equal task velocities.

(ii) Condition B: Fixed rewards of 3 units for each task.

I(iii) Condition C: Equal processing times of 3 sec. for each task.

g(iv) Condition D: Full blown, where none of the variables is

fixed.

(v) Condition B : Similar to condition B, but parallel monitoring

is denied.

IIn condition B y, the images of all the bars, except the one being

jprocessed, are blanked from the CRT screen. This prevents subjects from

monitoring other tasks, and, perhaps, deciding on the next task to be

acted upon. Thus, the subjects are forced to act In a serial mode under

this experimental condition.

Six subjects, all university of Connecticut graduate Engineering

students, were well-trained on the experimental paradigm. The relation-

ships among the tasks' velocities and procassing times were carefully

chosen as to preclude a perfect score, and to motivate the subjects to

- use a rational sequencing algorithm. In all cases, the subjects were

I instructed to maximize the accumulated reward, and were scored using the

I total score, as well as the percentage of a perfect score. They were

informed of their scre following each 90 sec. run and were encou, aged

j to keep it as highi as possible.

fn the data-taking runs each subject was presented with eight repli-

I cations of each experimental condition, in randomized order. This was

P achieved via a "scrambling technique" that switched tasks among the five

parallel lines for different runs 110 1. The tasks were ujnscrambled at

11
I4
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the time of data analysis. This type of experimental design, when aggre-

gated across subjects, yields ensemble statistics that are indicative of

the subjects' population. The source of randomness in this design is the

Iinter-subject variability. This type of design has the added advantage

of minimizing artifacts such as the effects of learning.

I The data collected were time-histories for each line i of the sub-

I Ject's decisions, di(t); the task completion status, ci(t); and the error

sequence, ei(t). The variables di(t), ci(t) and ei(t) are binary numbers

jdefined by

1 if a subject was processing a task on line i at time t

o otherwise (1.5a)

1 ci(t) 1, if a subject had completed a task on line i by time t

0 otherwise (l.5b)

and 1 if a subject was processing a task on line i at time t,

ei(t) = which can not be successfully completed

0 otherwise (1.5c)

In Eq. (l.5a), i=O refers to the "do nothing" or monitoring decision.

The variable c i(t) is set to zero at the end of the opportunity window

of the present task, before the arrival of the next task in the sequence.

At a sampling rate of 20/sec., each run yielded 1800 datum points for

each of the variables recorded. For the same experimental condition,

the time-histories were ensemble averaged to obtain the decision proba-

bilities, Pdi(t); completion probabilities, Pi(t); and error probabili-

ties, P ei(t). The averaging process was first done for each subject,

and then across subjects to obtain the "grand" averages. The details of

data analysis are presented in section 3.1.

I1.6 SUMMARY

In previous sections, we have examined the relevant literature on

I,. !..
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behavioral decision theory and multi-task decision-making. This overview

has suggested several limitations of the previous work and possible means

to overcome them. The following conclusions and comments in this regard

seem appropriate.

(i) Status of behavioral decision theory: Most of the litera-

ture on behavioral decision theory is devoted to single-

stage decision-making. The existing literature on multi-stage

decision-making emphasizes either information-processing

(diagnosis) or action selection. However, any realistic

multi-task system involves diagnosis as well as dynamic

(usually real-time) action selection.

(ii) Normative versus Descriptive models: Theories of rational

behavior may be normative or descriptive. The normative

theory attempts to prescribe how decisions should be made in

the face of a given situation. The descriptive theory, on

the other hand, purports to explain how decisions are made

in a given situation. A review of behavioral decision

theory [2] shows that normative (prescriptive) models can

serve as a first approximation to assess human decision be-

havior, or they can be used as a formal standard against

which to compare actual performance. The model developed in

this thesis is normative in construct.

1 (iii) Need for good Multi-task paradigm: Experiments in multi-

task decision-making may, by their very nature, become overly

elaborate and cumbersome. This is especially true when the

expvrimenter yields to the natural temptation to simulate

the "entire scenario", thereby possibly masking trends in the

, resulting data. In summarizing the research on behavioral

'I
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decision theory, we noted that the discrepancies between a

normative model and observed behavior can be attributed to

cognitive (intellectual or information-processing) limita-

tions, misperception of the task and procedural variables.

Since there exists no systematic method of identifying the

human limitations beyond current psychological knowledge,

the multi-task supervisory control decision paradigms should

be designed to minimize the limitations due to misperception

of the task and procedural variables. Such an experimental

paradigm was developed in section 1.5. This paradigm is

simple, realistic, easy to understand and to administer.

It retains the essence of the multi-task decision problem

by presenting the human with a dynamic situation wherein

tasks of different value, time requirement and deadline

compete for his attention. Due to its simplicity, the

paradigm minimizes the possibility of human misperception

of the tasks. If we can understand and model the behavior

of well-trained subjects in simple laboratory tasks, then

perhaps this knowledge may be extended to more complex

tasks. The ability to repeat laboratory experiments is a

powerful tool, for it allows us to study intersubject

differences, the effects of different information, and

provides us with a measure of variability inherent in

human's decision process.

(iv) Curse of insensitivity: Most normative decision models of

behavioral research are plagued with the "curse of insensi-

tivity": substantial variations in the optimal decision

policies lead to only a small change in the resulting

lb
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cost. This problem could have been minimized, to some extent,

by the proper choice of reward and processing time structures,

as the discrete format employed in the present experimental

I paradigm.

(V) Modeling approaches: Queueing and sequencing (combinatorial)

theoretic approaches [7,8] appear to be the most popular

I modeling approaches to model human decision strategy in a

MTDP. The main shortcoming of classical queueing theory

I, approach is that it is extremely difficult, if not impossible,

to determine the structure of an optimal strategy in the MTDP,

as it involves a dynamic, endogeneous, preempt-repeat

priority discipline with non-conservative' customer (task)

and server (human) characteristics.tt The main advantage of

this approach is that it can handle stochastic arrivals

(which are assumed to occur indefinitely into the future),

and stochastic processing times. That is, the approach can

incorporate uncertainty in the task characteristics. How-

ever, in many practical applications the task characteristics

are time dependent and are, to a large extent, predictable.

1Therefore, it is the randomness associated with the decision-
maker that is of primary importance, and the stochastic pro-

S]"perties of tasks are a second order effect (but not neces-

sarily negligible). Moreover, the classical queueing theory

places great emphasis on finding stationary measures of

Irhis Implies that a customer (task) may leave before being served or
the server (human) may refuse to service a low priority customer (task).

31 1 With moderate complexity, a stationary, state dependent, non-preemptive
J priority policy in non-conservative queueing systems can be determined

using the tools of dynamic programming. The reader is referred to Il]
for details.

, -" ,I
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system effectiveness, whereas the dominant issue in real

I systems is the determination of instant to instant human

decision behavior, while servicing a time dependent demand.

I The combinatorial approaches, on the other hand, involve

i sequencing a finite number of tasks whose arrival times,

processing times and dead-lines are known deterministically

I (if random, mean values are used). This approach can not

handle randomness associated with the decision-maker or the

1task parameters easily. Thus, the incorporation of human

Irandomness into the decision strategy is difficult using a

sequencing theoretic approach. The control and semi-Markov

Idecision process approach to modeling the human decision
strategy in a MTDP, developed in Chapter II and in [10], sub-

I sumes the earlier two approaches and can explicitly incor-

porate human limitations.

(vi) Drcwbacks of Tulga's model: One major drawback of Tulga's

model is that the fundamental human limitations have not been

identified. First, it is almost impossible for the human to

have perfect estimates of the time available and the time re-

quired to process a task. Second, it is well known [12] that

-" the humans do not respond to the same stimulus in identical

I fashion at different times (due to their limited resolving

power), even when there. are no changes in their information

.1 or resources. This makes it difficult to validate/invali-

date the truly normative, sample-path (Monte Carlo) models

of the type espoused by Tulga. Third, it is also well known

p that the human is a sequential decision-maker with limited

E
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Iinformation-processing capabilities 113]. Thus, it is

I difficult to justify normative, combinatorial models based

on dynamic progra-mming (DP), as they require the specifica-

I tion of complete future courses of action before any task is

acted upon. Moreover, the computational load of the DP

increases exponentially with the number of tasks to be

I sequenced. On the other hand, if a finite stage DP is

advocated as a compromise, then the nagging question is how

Ito choose the number of stages? The last point is not a

peculiarity of Tulga's model alone. It applies to all the

behavioral models employing DP formulation. The present

Idynamic decision model (DDM) overcomes the first two cited

limitations of Tulga's model by explicitly including human

randomness in the model, and circumvents the combinatorial

problem of DP by postulating a myopic (one-stage) decision

policy.

(vii) Modes of Model implementation: If the subjects do not come

from a homogeneous population, in terms of their decision

performance, then the sample path (Monte Carlo) models of the

type proposed in [8] make little sense. The DDM developed in

4this thesis can be exercised either in a covariance propaga-

tion mode or in a Monte Carlo (sample-path) mode. The first

mode gives probabilistic predictions necessary for model-data

validation. This is done in chapter III. The second mode is

appropriate for using the model as a decision aid. These

issues are explored in chapter IV.
I



II. ANALYTIC MODEL FOR HUMAN TASK SEQUENCING

Our analytic approach to model human decision-making in multi-task

environments is based on, and will extend, the optimal control model (OCM)

of Kleinman et al [14-16]. The optimal control model is a general and

versatile methodology for predicting human response in stochastic, multi-

variable control tasks. The modeling approach, rooted in modern control

and estimation theories, is based on the assumption that a well-trained

and well-motivated human operator behaves in an optimal manner, subject

to his inherent limitations and constraints, and the perceived task

objectives. The OCM has been applied successfully in a variety of manual

control tasks, as well as in tasks that do not involve closed-loop control

[17-181. However, all these studies emphasize either the continuous con-

trol function of the human, or his ability to test binary hypotheses.

They do not address the decision-making/task-sharing roles of the human

that gain prominence in supervisory control, or in semi-automated sub-

systems of the type discussed in chapter I.

This chapter extends the conceptual framework of the OCM methodology

to multi-task situations in which monitoring, information-processing and

dynamic decision-making (task sequencing) are the operator's main activi-

ties. The basic idea of our modeling approach is to integrate decision-

directed elements within an OCM-like construct. As with the OCM, the

approach is normative, in that we attempt to determine what a well-trained

and well-motivated human operator should do, given the task objectives.

In the sections below, the key elements of OCM are outlined briefly

25
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and the dynamic decidion model (DDM) of human task sequencing performance

emerges.

2.1 Optimal Control Model of Human Response - An Overview

2.1.1 Background [14-16]

The basic structure of the OCM is shown in Fig. 6 and consists of

the following elements:

(i) Perceptual model: The perceptual model translates displayed

variables, y(t), into noisy, delayed perceived variables

Cp(t), which is the information upon which the human bases

his subsequent estimation, control and/or decision strategies.

(ii) Human Limitations: The OCM includes time-delay, human ran-

domness, small signal threshold phenomenon, and scanning

effects in its formulation. The time-delay, T, accounts for

the internal human delays associated with visual, central pro-

cessing and neuromotor pathways. Human randomness is assumed

to be manifested as errors in observing/processing displayed
4.

quantities and in executing intended control movements. Thus,

observation noise, v Y(t) and motor noise, v U(t) are lumped

representations of controller's central processing and sensory

- randomness. The non-linear threshold in the OCM captures the

"neglect" phenomenon exhibited by humans when observing small

stimuli. Finally, the scanning-interference model accounts

for the fact that the human must allocate monitoring attention

among the various displays [16].

(iii) Information-Processor: The information-processor consists of

a Kalman filter and predictor that compensate for the psycho-

physical limitations of the human to generate the "best"

I'
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estimate of the (augmented) system state (t) from the per-

ceived information base.

(iv) Feedback Gain: The control task requirements are assumed to

be adeqdately represented by thd minimization of a quadratic

cost functional. The operator's commanded control input

u Ct) - -L_(t), where the feedback gains L minimize the cost-=c

Ifunctional.
(v) Motor model: The motor model accounts for the bandwidth limi-

tations of the human via the neuromotor dynamics, (TNS+I)- I

and his inability to generate noise-free control signals via

the motor noise, v (t).

The Kalman filter-predictor, followed by the feedback gains, repre-

sent the adaptations by which the human operator optimizes his performance

and compensates for his inherent limitations. In general, these model

elements depend on the (human's internal characterization of the) system

dynamics, human limitations, and the task requirements. The Kalman filter

generates the best estimate of the delayed (augmented) state

£(t) = E{x(t- )f (O),a~t} (2.1)

according to an equation of the form

j(t) = A k(t) + Bu (t-T) + Gf v(t) (2.2)

where the filter gains, Gf, are determined from a matrix Riccati differ-

ential equation. The quantity

v(t) = YP (t) - C P(t) (2.3)

Iis the innovation process and represents the difference between the actual

and expected observations. Basically, V(t) is the new information that

I
1, I



i r t29

is brought to the filter by yp(t). The predictor generates an estimate

of the present state, 2(t), by projecting p(t) ahead by T seconds to

compensate for the time-delay.

The state estimate, ^(t), and its associated covariance matrix, E(t),

form a sufficient statistic for the closed loop man-machine system. In

other words, the pair J^(t),E(t) can be used as a basis for determining

subsequent control/decision strategies. A second quantity of interest in

the OCM information-processor is the innovation process, V(t), defined in

Eq. (2.3). When the internal model of the Kalman filter adequately

represents the controlled element dynamics, the process v(t) is a zero-

mean, white Gaussian noise process with covariance V y(t) equal to the

observation noise covariance. However, when the internal model an] system

dynamics are not commensurate, the human's estimate of the system behavior

deviates from the observed dynamic behavior. These differences produce a

non-zero mean, correlated innovation process. This property can be used

to develop models of human failure detection [18], and to investigate the

effects of training on human performance.

2.1.2 Elements for Decision-making/Detection

A key feature of the OCM's information-processor is that it provides

the statistical characteristics of two important variables: the state* I
Iestimate {i(t),E(t)J ; and the innovation process tv(t), V (t) . These,

S y

, [in turn, have provided a mechanism for studying selected decision/detec-

tion phenomena in man-machine systems. For example, Levison and Tanner

I[17] studied how well subjects could determine if a signal embedded in
noise exceeded a given threshold. Their model assumed that the operator

Iwas an optimal decision-maker in the sense of maximizing the subjectively
Iexpected utility. For equal penalties on missed detections and false

alarms, this rule reduces to a Likelihood ratio test, which was Implemen-

I
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ted using the sufficient statistic j^(t),E(t)I . In another study, Gai

i and Curry [18] used the OCM information-processing submodel to analyze

failure detection in a simple laboratory task and in an experiment simu-

lating pilot monitoring of an automatic landing system. They considered

only instrument failures, and modeled the detection process as a sequen-

n tial hypothesis test on the mean of the innovations, v(t).

These studies demonstrate the potential of modern estimation techni-

ques in decision-making/detection situations. An important feature of

the work in [17-18] is that it provides a validation of the Kalman filter-

predictor submodel in tasks not involving closed-loop control. When these

validatiog results are combined with the overall verification of the OCM

in manual control tasks, the potential of a control-theoretic construct

for modeling human decision processes emerges.

2.2 Overview of Modeling Approach

Our approach to modeling human decision behavior parallels the opti-

mal control model of human response in spirit, but not in form. In the

OCM, the control and information-processing strategies are separable.

Once an estimate of the system state is available, the linear feedback

control law uses this estimate as if it were the true state. Human limi-

tations affect only the quality of (augmented) state estimates.

4This type of separation has been found to be plausible in the present

dynamic decision model (DDM). For any task i in the opportunity window,

it is possible to show that T (t), the time required to complete task i

Ri

i starting at time t; and T1 (t), the time available/remaining to work on

task I at time t, are valid decision state variables. That is, these two

I quantities satisfy the axiomatic definition of a state that it must pro-

I vide the complete running summary of past actions (decisions). The joint
density of the decision states of all tasks in the opportunity window is

3
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estimated from the information-processor of the DDM, and provides suffi-

cient information for the decision-process. The statistics of decision

states, along with the task values, r1 (t), and a performance metric, are

used to compute the decision strategy. By analogy to the control theore-

tic OCM, the values ri(t) play the role of cost functional weights, while

the decision state variables correspond to system state variables.

A block diagram of the DDM is shown in Fig. 7. Each of the N tasks

in the opportunity window is represented by a dynamic subsystem acted on

by disturbances to account for the non-stationarities in task characteris-

tics. The preceived outputs il are delayed, noisy versions of the

task states IXTA and are contingent upon the monitoring process. The

preceived outputs are processed to produce the best linear unbiased

estimates of the task states i and their associated covariances

JEit via a Kalman filter-predictor submodel. The statistics of the task

states Ii Eil are, in turn,used to determine the first and second order

statistics of the decision states TRi, aRI and Tai OaT The statis-

tics of the decision states, along with the task values, ri(t); are

combined to determine the attractiveness measure, M.(t), of each task in

the opportunity window. Subsequently, the measures are used to generate

the probability Pdi(t) of acting on each of the N tasks and the probabil-

ity P d(t) of not acting on any task (or the monitoring probability,

P dm(t)).
.ad

The next few sections expand briefly on various features of DDM.

2.3 System Dynamics

* In formulating the multi-task decision problem, it is convenient to

differentiate among the process state or Markov state, s; the set of

task states,x 1 ; and the set of decision states, " In the present

II
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experimental context, the process state, s, is related to the status of

the CRT display and indicates whether or not a task is present on each of

the K(-5) lines, K being the system capacity. The task state, 'T, de-

i scribes the dynamical variables internal to each task i. In the present

experimental paradigm, the task state consists of the instantaneous posi-

I tion and velocity of the bar and the time required to process the task.

Finally, the decision state, 2di' consisting of time available and the

time required to process task i, is a memoryless functional transformation

1 of the task state, -Si, These notions are formalized below.

2.3.1 Process state or Markov state, s

Since the number of tasks in the system is less than or equal to K

(system capacity), the process state of the multi-task system at an arbi-

trary time t can be represented by a K-dimensional row vector as

s(Il 12* . . .IK) (2.4)

where the binary index variable Ii(t) is given by

S1 if there exists a task on line i at time t
0 otherwise

The total number of possible process states are 2 . Note that the number

- of tasks in the opportunity window at any time t is given by

K

We let A(t) denote the set of N available (accessible) tasks in the

opportunity window at time t. Formally,

A!t ji lyt) a ; i-1,2,...,K (2.5)

!M,



Clear l., the decision set V(t), the set of (N+l) feasible decisions at

time t, is given by

V(t) = A(t) +

Thus, the (N+I) possible decisions at any time t are to attend to one of

the N tasks in the opportunity window, or do nothing. The set of feasi-

ble decisions is time-varying as a consequence of estimation and actions

bv the DM, and as a result of the arrival of new tasks with different

attributes.

2.3.2 Task State, X,i

For any task on line i, the time required to complete task i, TRi,

the position of the bar from the left edge, ti, and the velocity, vi, of

the bar constitute the task state variables as shown in Fig. 8.

"
0 PV.

• 0'

0T

I i iTRi

p Opportunity Window, L 12"

fig. 8: TASK STATE VARIABLES
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The state variable xTil(t), denoting the time required to complete task

i starting at time t, is action oriented. Its evolution can be charac-

terized by the differential equation!
iTil (t) - fRi(t) - -di(t) (2.7)

where d (t) is a binary decision variable given by

(1 if the decision is to act on task i at time t
d it') 10 otherwise

Since the human can act on only one task at any given time, we have the

following constraints on the decision variables:

d =(t) 1 implies d (t) - 0 i#j; i, j c D(t)

where d0 (t) I refers to the "do nothing" or monitoring decision.t

The remaining task state variables, representing the position and velo-

city of the bar, are given by

x Mi2(t) -i(t) 'xi3(t)(.

(2.8)
:' i x l(t)= " i (t) = w(t)

,13 i W wiM

where w (t) is a zero-mean, white Gaussian noise with variance W(t)

that accounts for (perceived) non-stationarities in task velocity.

In vector-matrix form, the dynamics of the task state can be represented

1Note that the defining differential equation for TRI assumes a preempt->1 |resume processing discipline, while the experimental paradigm was de-
signed to operate in a preempt-repeat mode. The form of Eq (2.7) was
chosen after examining the experimental data, which showed that the
human seldom preempted a task in all the experimental conditions studied.
However, it is straightforward to include the effects of a preempt-repeat
mode of processing by reinitializing the dynamical equation for TRI, every-
time di(t) switches from 1 to 0 and TRi(t) is non-zero.

" Ij,4

$1
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I _xi(t) A xri(t) + b wi(t) - . di(t); icA(t) (2.9)

where

I| i - 'x~il"Ti2'xTi3J" [TRi.Li.vij,[] [0] [1]
A= 0 0 b ;0 1=

The subsystem state in Eq (2.9) is reinitialized to the new task attri-

butes everytime a new task arrives on line i.

2.3.3 Decision State, Li

The decision state, 4,- (TRi, Tai], is related to the task state

via a functional transformation as

Adi(t) - F[xT(t) ]

In the present experimental context, the time required to complete task i

starting at time t, Tpi(t), is given by

T Ri (t) - x dil(t) E XTil(t) (2.10)

The other decision state variable Tai(t), the time available to work on

task i at time t, is related to the task state xrl via

SL- xTi 2 (t) L i(t), Tai(t) = Xdi2(t) = -i() = it (2.11)

Tai~)'x1 'T1 3 (t) v i(t)
where L is the length of the opportunity window (z 12").

1 In the present experimental paradigm, Tai(t) is assumed to be independent

* 1 of TRi(t). This is not a restrictive assumption. If the nature of rela-

! tionship between Tai (t) and TRi (t) is known, it can be incorporated into

the model formulation in a straightforward manner.

"7 

-
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2.3.4 Preceptual Model

Since the processing times are quantized in steps of 1 sec., the

displayed information consists of a modified version of the task state,

An," Thus,

IQ [TRi (tfi

Yi(t) i(t) i(t) + Vq(t) (2.12)

vi(t)

where v (t), the linearized quantization error, is bounded by
q

-0.5 < v(t) < 0.5 (2.13)

In order to represent the effects of quantization on the estimation pro-

cess, it is frequently assumed [19] that v q(t) is uncorrelated with

TRi(t), and that it is a stationary, zero-mean, white noise process uni-

formly distributed over the range of quantization error of Eq (2.13).

The autocovariance of the noise process v (t) can be shown to be
q

E [Vq (t) Vq Vq (t-0) - M- 6 (t-0) (2.14)

Following usual practice, the human is assumed to perceive a noisy,

delayed and linearized replica of .x(t) given by

S i(t) - xi(t-T) + vyi(t-T) (2.15)

where

.1 T -the human's time delay (Z .2 see)

v i(t) - the observation noise at time t

The observation noise vyi(t) is a zero-mean, white Gaussian noise process

with diagonal covariance matrix V.yi  As with the OCM, the diagonal

A4
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elements of the observation noise covariance matrix associated with the

task position and velocity are functionally related to the monitoring

strategy and the mean-square values of the corresponding output variables

I according to

I i E ij(t) (2.16)

I where

Yij - j th element of the vector y; J-1,2,3

Pi M noise to signal ratio (NSR) associated with of task

Ii (Z .01)

fi(t) - monitoring allocation to task i

IThere is assumed to be no intratask attention allocation among the indi-
l vidual components of the displayed variables, yi' as the task information

is presented in an integrated form. Thus, fi(t) is the monitoring atten-

I tion to task i. Also since the (linearized) quantization error over-

': shadows the inherent human randomness in perceiving the decision state

variable, TRI(t), the observation noise covariance V can be neg-
lected in comparison to V . In summary, the time-histories of Yi are

the stimuli upon which the human bases his subsequent estimation and

jL decision strategies.

t2.4 Monitoring Strategy

I The monitoring allocations, fi(t), affect the subsequent decision
Ii

strategy. On the other hand, the specifics of the experimental paradigm

determine whether or not the monitoring strategy is dependent on theII~decision strategy. In the present experimental context, if a task i is

acted upon at time t (i.e., di(t)-1), it is also monitored. However,

* 1 there exist two possibilities for the other tasks j~i:

W'%'1
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() ParllZel monitoring: In this case, all tasks, including the

£ one being acted upon, can be monitored simultaneously. (This

corresponds to experimental conditions A-D). Here, an equal

(monitoring) attention allocation strategy, i.e., fi(t) S, is

found to be adequate for model applications. This result is

not surprising, since an overview on the existing monitoring

models [10,16] indicates that the overall system performance

is not very sensitive to changes in the monitoring process

over a reasonable range of variation about the optimal strat-

egy, at least for well-designed displays.

(ii) No Parallet onitoring: In this case, tasks, other than that

being acted upon, are not available for monitoring (experi-

mental condition B y), but monitoring of all tasks is an

explicit decision alternative. Here, the monitoring process

is strongly coupled to the decision strategy. Noting that

fi(t) is the ensemble probability of monitoring task i at

time t, we have by the total probability rule

fi(t) - P {monitor task i at time ti

- E P {monitor i, act on J}
JcV(t)

- E P {monitor ijact on J} • Pdj(t)

J D(t)

Pdm (t)
- Pdi(c) + d i c A(t) (2.17)

where it is assumed that the monitoring probability, Pdm(t),

is equally distributed among N tasks.

p -
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2.5 Information - Processor

The information-processor compensates for the human's inherent ran-

domness, time-delay and monitoring allocations to produce the "best"

I estimate of the decision state from the perceived information base. As

i with the OCM, the information-processor consists of a Kalman filter and

a linear predictor. This choice was motivated by the results of [17-181,

which provided an independent verification of the filter-predictor struc-

ture for the information-processor in situations not involving closed-

loop control. The Kalman filter-predictor submodel generates the best

linear unbiased estimates of the task state, XTi(t) and its associated

covariance matrix, Ei(t). The pairs Ti (t), Ei(t)} are subsequently

used to compute the first and second order statistics of the decision

state, 2di(t), viz., the pairs CTRi(t), O W} and t), ai (t)} for
Rieach task i.

2.5.1 Kalman Filter

IThe Kalman filter generates the best linear unbiased estimate of

the delayed state

I p(M = E lT(tT)/x (a) a < t

according to an equation of the form* I
£ 1 ,2 4 (t) = A Ri(t) - j d,(t-T) + Gi(t) xi(t) - Ri(t) (2.18)I

I with the initial condition '(t. + i) - TRi (t0i)9 0, vi(t0i)] . Here

t0i is the initial (arrival or ready) time of a task on line i, and

Ri(t 0) is the a priori mean of the processing time.

'The filter gains GI(t) are given by

G1 (t) = :i(t) [V/(t-T) + Vq (2.19)

-I
fN
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where E.(t) is generated from the usual Riccati equation

1-

A E = + E i A' - E. [Vqy(t-T) q - E i + b WI(t-T) b' (2.20)

with the initial condition
( TH

- TR L ) 2 ]

E (t0
i + T) = diag 12 , 0 ,.01 IT V 2(t

where TRH and TRL are the a priori maximum and minimum values of the

processing time. The initial uncertainty in the velocity estimation is

I assumed to scale with the square of the velocity in accordance with the

Weber's law.

I 2.5.2 Linear Predictor

Prediction of the present task state, xi(t), is obtained by inte-

grating the vector-matrix linear differential equation

A Ti() - di(a) (2.21)

from ( = t-1 to ,o = t with the initial condition ri(t-T) = Pi(t).

The error covariance associated with the task state estimate XTi(t),

denoted by Ei (t), is given by

t
* AL A' T A(t-a) W b A'(t-)

E.(t) = e , C + e b W(a) b'e d (2.22)
*: t-.t

2.5.3 Statistics of the decision state, i

I, c The statistics of the decision state variable TRi (t) are readily

computed from thost of the task state,--- t(t), as

TRI(t) = conditional mean - XTil(t)

0 R (t) = conditional variance Etl(t)

*R1

-MOW



42

The human's perception of the conditional density of the decision state

variable T Ri(t) is assumed to be Gaussian with mean T Ri(t) and variance

2Ri(t)•
i In order to compute the statistics of the remaining decision state

variable Tai(t), we note from Eq (2.11) that it involves the ratio of two

Gaussian random variables. If the observation signal-to-noise ratio (SNR)

is sufficiently high , then it can be shown [20] that T (t) is approxi-
ai

mately a Gaussian random variable. An unbiased estimate of Tai(t) and

its variance can be evaluated by linearizing Eq (2.11) about the condi-

tional unbiased estimates W(t) and vi as

L-- i(t) L-ei (t)- [ ( 01
T (t) = v__t) = i [e(t)-ti(t)]

L- i(t) v(t-V it t ~)] v~)v t1 i i

Lvt t) ]it  $t

(2.24)

Using Eq (2.24), we have

L- i(t)
T (t) Conditional mean =
ai v i (t)

(2.25)
1 2

ai(t) = Conditional variance

- Ei2 2 (t)+Ei3 3 (t)Ta (t)+2E (t)i (t)
12 13 ai 123 ai

vi1(t)

Due to the scaling nature of the noise processes in the information

2

SNR -v10 Zog- should be (approximately) greater than 12 db. This
0 28 2133

condition is almost always satisfied in man-machine applications.

",I

I.. 1 I " i " 1 N ,- . - -_ -. ,- r ._ _., . .. ,-
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processor, one might expect that Ei22 si C(t); E1 2 3 2  vi(t) i(t);
^2

and Ei33 _E3 2(t) where Ei' 2 C3 > 0. Therefore, Eq (2.25) implies,

albeit heuristically, thatI 2

a ai(t) Z E Tai(t) ; 6 > 0

Thus, the standard deviation of time available, aai(t), is likely to scale

with its conditional mean, Tai(t). This is intuitively appealing.i
In summary, the decision state variables, i = [T'Tai' , of the

I ODM are assumed to be normal with the non-stationary perceived density

and distribution functions, Yi(TRi;t), ri(TRi;t) and i(Ta;t), Di(Tai;t)

I respectively. That is,

I yi(TR ;t) = N[TR(t); 2 (t)

(2.26)
S (Tai;t) = N[Ti(t); a 2 (0)]

) ai ai ait

The conditional Gaussian statistics of the decision state from an impor-

tant input to the decision process as shown in Fig. 7.

I 2.6 Decision Strategy

IIn this section, the multi-task decision problem is formulated in

the framework of a non-stationary, semi-Markov decision process (SMDP).|
Via this formulation, the combined statistics of the decision states of

N tasks are used to compute the transition probabilities among the

various process states for each of the decision alternatives. The transi-

tion probabilities, along with the task values, are used to determine the

attractiveness measures of tasks, employing the subjectively expected

value (SEV) as a criterion of performance. These measures form an input

S I to a stochastic choice model that generates the decision probabilities.

The decision process is depicted in Fig. 9, and is elaborated next.

;~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~1 .:° i . ... ...- ,' < ' '
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I
{r } = Task Values

,
I SMDP Transition SEV i Stochastic

(T ai 7ai} l Formulation Probabilities Crterin Attractiveness Model
' ~measures |

I
Fig. 9: HUMAN DECISION PROCESS

2.6.1 Semi-Markov Decision Process Formulation

Recall that a non-stationary SMDP is characterized by the hexad

(S(t), V(t), E(t), T(t), H(t), r(t)), where

S(t) = set of process (Markov) states of the system (state space)

D(t) = set of possible decisions (action set)

E(t) = set of events (event set)

T(t) = set of transformation rules that describe the changes in

the state. This is usually expressed in terms of transi-

tion probabilities.

H(t) = Holding time function that determines how long the system

stays in a given state before making transition to another

specified state. This is expressed in terms of holding time

density functions.

4 1r(t) = set of rewards associated with each state transition (reward

structure).

Thus, in order to formulate the multi-task decision problem as an SMI)P,

we nec.d to specify the process descriptors S(t), E(t), T(t), H1(t), r(t)

S I
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and V(t).

A. State Space, S(t)

The state space S is time invariant and consists of 2K elements

corresponding to 2K possible realizations of the process state s, where

K is the system capacity. Symbolically,

SS = {set of 2K process states, s}

Associated with a process state s at time t, there exist N pairs of

I decision state variables {TRi(t), Ta(t)}, icA(t). Here, A(t) is the

set of N available tasks in the opportunity window at time t.

I B. Event set, E(t)_and the Transformation Rule, T(t)

The transformation rule (or the law of motion), T(t), is expressed

in terms of transition probabilities p s(t), where s is the process

state at time t, s' is the destination process state after a random holding

time T in process state s, and i c A(t) denotes the action on a task i in

I the opportunity window. The destination state st depends on the values of

(N+l) independent random variables, TRi(t) and T am(t), m E A(t); associ-

ated with the process state s and the decision to act on task I at time

t. It is clear that a decision to act on task I results in one of the

following process state transitions shown in Fig. 10.

1 (z) Successful Cormrpletion or loss of task i: The task I is said

a to be successfully completed if the random variable T t)
Ri

tNote that this formulation assumes complete ignorance of the random

S I variables associated with the future arrivals on the (K-N) empty lines.
That is, transitions to process states corresponding to arrivals on

* empty lines are not included in this formulation. This implies that the
I decision strategy depends only on the characteristics of tasks in the

opportunity window. If the probabilistic information regarding future
arrivals is available, it can be incorporated into the decision strategy.
The reader is referred to Ref. [10] for details.

" :I - l I ... "1
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b t - successful conpletlon
sP -- '1  or loss of task i

Act on
task 1 '01

s - Loss of task Ji;• " s r~j ._g¢,r), - - J j  e A(t)

N

time t
time t+T

Fig. 10: PROCESS STATE TRANSITION DIAGRAM OF THE MTDP

of task i is greater than zero, but is less than the available

times, T am(t), of all the tasks, including i, in the opportu-

nity window. On the other hand, task i is said to be lost if

the random variable Tai(t) is greater than zero, but lessiai

than TRi(t) and T aj(t), j i. In any case, the new process

state s' = s -a , wheres, is a K-dimensional unit row vector

whose i th component is one and whose other components are

zero.

(ii) LosS of a task j 4 i: This event occurs if Taj (t) is greater

than zero, but less than TRi(t) and T am(t), m 0 J. When this

event occurs, the new process state a' - e--
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Thus, the destination process state, a t , and the random holding time,

T, depend on the outcome of a race among the (N+l) competing, non-station-

ary random processes TRi(t) and Tam(t), m E A(t) associated with the pro-

cess state s and action i. This type of semi-Markov decision process,

wherein the state transitions are determined by a race among several

random processes is known as a "competing semi-Markov decision process"

[21]. It should be emphasized that the analysis of MTDP is complicated

by the fact that the transition probabilities and the random holding time

functions are non-stationary.

It is clear from the above event description that there are N

possible process state transitions of interest from state s. In general,

the destination process state s' = s - em, m E A(t). In the following,

the transition probabilities for the admissible destination process

states are computed. We suppress the time dependence of the density and

distribution functions of the decision states for ease of notation.

(a) Probability of event (i): This is the probability that the new

* process state s' = s - e given that the present process state is s and

the decision is to act on task i. Thus,

si

Pi ,(t) ni(t) + Wc.i(t ; s' = s- (2.27)

where

i (t) = P{action on task i, task i is successfully completed,

other channels intact}

= P{TRi < T I* ILR- am

m c A(t)

o m i A(t)

W i(t) - P{actLon on task i, task i is lost, other channels intact}

- S
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PT < T } P{T i < T }iai- Ri mc€A(t) al- am ,
U 

m# i

[l-i(r)J "1 1I-rT)] . (T) dTSm A(t) m i

(b) Probabilities associated with event (ii): This is the probability

that the new state s' = s - ej ; j 0 i, given that the present state is

s and decision is to act on task i. Therefore,

P s (t) = w1i (t) ; s' = s - ej .# i (2.28)

where

A
W ij (t) Pfactlon on task i, an azcessible task j other than i is

lost, all the other tasks intacti

m c A(t) aj- am
j1 m# j

mE:A (r)

- In summary, the N transition probabilities for each i c A(t) are

€'~~T i [(t) + W l t ) ;s = s-e

Pi ,(t) -- -- -i (2.29)~U ss (t) ; s' = S- e j

I ] In Ref [101, numerical quadrature formulae of lermite [221, and Steen,

Byrne and Gelbard 1231 were suggested as a means to compute the required

Itransition probabilities. However, the computation of transition proba-

bilities can be greatly simplified using Luce's choice axiom 124-271,

which is ideally siuited to determine the probability that a certain

I
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random variable is the minimum (or maximum) among a set of random varia-

bles. This is precisely the problem of interest in generating the transi-

tion probabilities. For example, ni (t), the probability that TRi W is

less than Tam(t); m E A(t), can be computed via Luce's choice axiom

i according to

P{Tam(t)-Tp) 01 -In(t) + RiPTam (t) < 0} (2.30a)

I m A(t) Ri am(t) j
The main assumption underlying Luce's choice axiom is that the removal of

I some alternatives (random variable, in our case) does not alter the rela-

tive probabilities of choice among the remaining alternatives. In other

I words, the presence or absence of an alternative is irrelevant to the

relative probabilities of choice among the remaining alternatives, al-

though the individual probabilities will generally be affected. The proof

of the form of Eq (2.30a) is included in Appendix A.

Since the decision state variables are assumed to be Gaussian, Eq

( 2 .30a) simplifies to

t 1+ 1 + Erf (A im) (2.30b)

L I - Erf (A i)(23b
Sm c A(t)

whe re

A. A = Ri Tam
Aim

; Am J2 2

Ri am

and Erf(a) = 2 e-u d t Erf(-) =1

1; 0

Using a well knowi result [24] that the logistic function is a good ap-

PI3 I

..

I
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proximation to the cumulative normal, Eq (2.28b) can be further simpli-

i fied as

n 1 + {1 + exp (A im (2.30c)I [ex (-m).
m E A(t) J

i The computation of remaining transitiod probdbilites w im' m c A(t) pro-

ceeds along similar lines to Eq (2.30).

C. Holding time fuction. H(t)

I The holding time fumction is specified in terms of holding time

density functions, hi (T), which determine how long the system
7 SS

stays in process state s before making a transition to a specified state

s'. The density function h ,(T) can be obtained by first determining
ss

the joint probability - probability density function, fis ('1), for the

event that a system in process state s will make its next transition to

process state s' after a holding time T, while acting on a task i c A(t).

I This event will occur in the competing SMDP only if the random variable

representing the destinacion process state s' takes on the value T and all

the other N random variables are greater than T. Therefore,

b bi(t) I- 171
m F_ A~t): I m~ it

Iyi(T)[l-i()]+-i()[-r(TflI; s = s - e

fi ,(.) (2.31)L.B
Igij (1) = 1 (1) • [1-r i(T)].

m c A(t)

m# j

I. |
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Note that the transition probabilities, P (T), of Eq (2.27) are related
.85

to f (t) via

ss' J M f,(T) dT for all s, s' c Sas o
0

The holding time density functions, h (T) are given byass

hi () = s for all allowable s, s' (2.32)

i 
P SIC

It should be emphasized that the functions f ,(S ) and hi ,(r) are non-I
stationary. Closed form expressions for the holding time density func-

tions are not possible and, hence, must be computed numerically 110,22,231.

D. Reward Structure, r(t)

When the transition from process state s to process state s' occurs

at some time t + T, the DM earns an expected reward r i  (T) in the form

of a bonus. That is, the DM earns a lump sum payment at the time of state

transition, a payment that depends on process states s, s'; the holding

time T, and action i. In the present MTDP, a reward ("bonus") of ri(t)

units is earned while acting on task i if and only if the new process

state s' = s - ei and the task i is successfully completed. The condi-

-tional probability that task i is successfully completed, given that the

new process state s' = s -.2, and action on task i, is ri(t)/[i(t)tii(t)J.

In addition, if it is assumed that there is a penalty of q (t) units for

i 1 losing a task m E A(t), then the reward structure can be described by

1 
ir(t)ni (t) - qi(t)W1 10(t)]

r ,( ) - [TI (IW +wii(t)J (2.33)

q(t) ; s' a - ; m A(t)I

•~ I
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It should be noted that r , (T) is the conditional expected reward, given

I the holding time. Even though there are no penalties for missed tasks in

the present MTDP, q m(t) of Eq (2.33) could still represent the subjective

losses (utilities) assigned by the DM. A logical choice for the subjec-

Itive values q m(t) are the objective rewards r m(t). The reward structure

of Eq (2.33) can be generalized to include decision dependent penalties,

I as well as a continuous yield rate [10].

E. Action Set, 0(t)
I At any time t, the DM is provided with (N+l) choices: act on one of

the N tasks in the accessible set A(t) or not act on any task (i.e., do

nothing or monitor). Thus, we have

I 0(t) = A(t) + {O}

The number of choices may differ from one process state to another. Some

process states may have only one alternative and, therefore, choice is

constrained whenever such a process state is occupied. The DM's problem

is to select the actions (over time) that will make the operation of the

system most rewarding.

2.6.2 Attractiveness Measures, M

The basic assumption underlying the human response modeling is that

* a well-trained human behaves in a normative, rational manner subject to

- his inherent limitations. We interpret this, mathematically, in terms of

maximizing a specified metric. As with the 0CM, the choice of a metric

may be either objective (specified by the experimenter), or subjective

(,adopted by the human in perofrming and relating to the task). In the

present experimental context, the objective metric involves the maximiza-

tion of reward earned. Since the proposed model is normative in construct,

we need to specify a subjective metric. If the subjective metric is the
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same as the objective metric, then, as shown in [10], a functional equa-

tion for the optimal decision strategy can be derived using dynamic pro-

gramming (DP) and semi-Markov decision process theory. However, the

tree-folding back procedure of the DP presents serious computational

difficulties ("curse of dimensionality"), and requires the evaluation and

specification of all future courses of action before any task is acted

upon. The latter point is at variance with the current psychological

knowledge of a human's inability to forsee the complete future effects of

his present decisions. If a finite stage DP is advocated as a compro-

mise, we are faced with the dilemma of selecting the number of stages.

These observations led us to the choice of the subjectively expected

value(SEV) of a decision as our metric (or "attractiveness measure") for

optimization. It is easy to show [101 that SEV corresponds to a myopic

(one-stage) policy, which can be derived from the DP formulation by

completely disregarding future rewards. That is, the myopic decision

policy acts at every time t, as though the present decision was the

final one. Conceptually, this approach is similar to the "open-loop-

feedback-optimal" approach of control theory, wherein the present value

of future information is neglected. t

IjThe attractiveness measure M i(t) of a decision to act on task i

t The DP formulation of the optimal strategy is of theoretical importance

in its own right, as it provides a general and flexible analytic frame-I work for the analysis of dynamic decision-making under uncertainty.
This framework covers all cases where the present decisions can affect
future information, uncertainties associated with the random processes
of the system, future rewards and future actions. More importantly, it
was shown in [10] that the optimal decision strategy subsumes Tulga's
deterministic, dynamic sequencing formulation of the MffDP [8], as well
as the Markov decision problem [21], and several single processor
sequencing theoretic rules [28]. The Markov decision formulation was
applied and extended in 11]) to determine stationary, non-preemptive
priority policies in a multi-class queueing system with finite capacity

and reneging (i.e., impatient customers).
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is simply the subjectively expected discounted value of reward from the
~first transition out of process state s regardless of when it occurs.

i It is given by

I
Mit) W P ('(0 J e ri ,(T) h ,(T) dT for all i e A(t)

I all s' 0

The use of discount factor, a in the computation of attractiveness meas-

ures, M i (t), may be interpreted in two ways: First, it can account for

Ithe DM's present perception of future rewards. That is, future rewards

are worth less at the present time ("reward today is sweeter than reward

tomorrow"). Howard [29] calls this explanation for a, the "time prefer-

ence" or the "greed-impatience trade off". The second interpretation is

in terms of the uncertainty associated with the duration of the period

Iduring which rewards can be earned.

For the specific MTDP, using Eqs (2.29), (2.32) and (2.33), Mi(t)

can be rewritten as

~~M (t)=[ri ~q(t)-q ~i(OW ]i ; )  qm )m(t)Wim (OL;t)

m e ACt)
,' m# i

for all i c A(t) (2.34)

I where i(ct;t) and 6 (Ct;t) are the exponential (Laplace) transforms of

the holding time density functions bi(T)/E[i(t) + ii(t)] and g m(T),

respectively. They are given by

an d 1te -aT bi(T) dT ; 0i(O;t) 1
?i

(
'

; t )  Ci (t f i m

I(;t) e-alm(T) dT; (O;t) 1, m i
im W im o

k M
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The attractiveness measure associated with the "do nothing" decision,

M0 (t), or that of monitoring decision, M(t), depends on whether or not

parallel monitoring is allowed.

Ci) Parallel monitoring: When parallel monitoring is allowed,

M0 (t) can be interpreted as the human's indifference towards,

or perception of, small rewards. In the present context, the

"do nothing" decision is made only if none of the available

tasks can be completed, or if there are no tasks to be pro-

cessed. We use

M0(t) q- q(t) W m(t) 60m(;t) (2.35)

m e A(t)

where w OM(t) and 0m(a;t) are computed using a constant

"fictitious" processing time for the null task, TRO. Thus,

M0(t) represents the loss due to disappearance of all tasks.

The value of TRO is chosen to match the data, but is a con-

stant across experimental conditions (A-D).

(ii) No Parallel monitoring: In this case, monitoring of tasks

other than the one being acted upon is not allowed (i.e.,

condition B ), but monitoring is a separate valid decision.

*Here, we postulate that the human makes this decision only

if the enhanced knowledge of the task characteristics off-

sets any reward he may have gained by acting on one of the N

tasks. That is, M M(t) is the average value of gathering in-
|m

formation for 6 sec (inegration time step) starting at time

t, and is given by

M(t) = [Mi(t+6)-M(t) (2.36)

i c A(t)

1I

| I
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Thus, the monitoring decision is invoked only if the infor-

mation value is sufficiently high to preclude action on one

of the tasks in the opportunity window. The attractiveness

measure M m(t), in conjunction with the measures M i(t), is

used to compute the monitoring probability, Pdm(t).

The form of Eqs. (2.34-2.36) for attractiveness measures is partic-

ularly appealing, as it relates to the "net gain" of each of the task

alternatives available to the decision-maker at time t. The first term

in Eq (2.34) represents the "potential gain" of acting on task i at time

t, whereas the summation term represents the "potential loss" due to the

disappearance of all the other tasks. The criterion explicitly considers

the human's inability to envisage all the future courses of actionB, as

would be required by DP formulation. Moreover, Eq (2.34) includes

human's preference for rewards that are distributed in time via the dis-

count factor, ct.

Sensitivity analysis of the DDM (chapter III) has shown that a

value of a = 0 gives the best possible match to the data. This could

imply either of two things: First, humans do not discount rewards

distributed over a short-time horizon (one to five seconds in our case).

A second and more plausible implication is that the use of discount

factor in the analysis of dynamic decision-making may be artificial.

4That is to say, once the human information-processing limitations are

included and a myopic policy is postulated for the human decision strat-

egy, it may not be necessary to employ discount factor, a. In any case,

when a is zero, Eq (2.34) simplifies to

Mit W rt(O)n~t W qm(t)wim(t) ;i E AWt (2.37)

m A(t)

Le
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Thus, there is no need to numerically evaluate the holding time density

functions. Note that Eq (2.37) is similar to the SEU model of Eq (1.4)

with appropriate interpretation.

In summary, the proposed myopic decision strategy in the general

case, but with a w 0, involves the coMputation of only 2N(N+I) transi-

tion probabilities to evaluate the (N+1) attractiveness measures, M m(t)

and M.(t), i c A(t). The required transition probabilities may be com-

puted in a straightforward manner via Luce's choice axiom. Therefore,

the computational load of the proposed decision strategy is insignificant

compared to that of the truly optimal DP formulation.

2.6.3 Stochastic Choice Model

A decision model that selects the task with maximum attractiveness

measure yields a (1-0) response, and suggests that the decision-maker

would always make the same sequence of decisions under similar condi-

tions. However, it is well known (12] that people fluctuate in their

response to the same stimulus, even when there are no changes in their

information or resources. Fluctuations in choice can arise because the

subject is unable to discriminate precisely, or because he may make

* calculating, response or perceptual errors. The stochastic choice models

*. assume that, although the attractiveness measures, Mi(t), could be

characterized by a single fixed number, the subjects perceive it as a

random variable, i(t), with some distribution (usually Gaussian). The

randomness may be interpreted in terms of the uncertainties associated

with the human perception of task values, ri(t ). Below, we again invoke

Luce's choice axiom to compute the decision probabilities, Pdi(t):

(i) Parattei nmnitoring:

II
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Pdi 1 =+ (t) ; I s D(t)Ik OtP{R (t) - (t) > 0
ks EV(t) i -M

k # 1 (2.38)

(ii) No parallel monitoring:

-P{f4.k(t).41(t) 
> oi}-g Pd(t) - + ta P{A (t) -]Rk(t) > o}Jk E A (t)

(2.39)

The decision probabilities Pdi are given by a relation similar

to Eq (2.38) with A (t) replacing M (t).
m o

In Eqs (2.38-2.39), we assume that I1.(t) are Gaussian random
i

variables with mean M.(t) and variance 2 (t) that scalesI1 'Mi
with M .(t). That is,

a Mi(t) = cIM(t)I (c z .2-.4) (2.40)

Iwhere c is the co-efficient of variation. Note that the

forms of Eqs (2.38-39) can be employed with any decision

Istrategy.

I 2.7 Model Predictions

The dynamic decision model can be used in a straightforward manner

to generate predictions of Pdi(t), as well as of other response measures

that can be computed from the experimental data:

(i) The completion probability, P ci(t) is the probability that

i task I is completed by time t. Thus,

P ci(t) = P{TRi (t) < 01 = Pi(0;t) ; i c At) (2.41)

When Pci(t) > .99, the task is assumed to be successfully

I completed and, therefore, is removed from the model.
I

I,

, 'Io
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(ii) The error probability, P (t), is the probability that the
e

human commits an error, i.e., starts acting on a task he can

not possibly complete. Thus, P e(t) is the sum over all tasks

of the probability of the joint event: action on task i and

the time required to complete task i is greater than the time

available to work on it. Therefore,

Pe(t) - 5 P{T Ri(t)-T ai(t) > 0} • Pdi(t) (2.42a)

i e A(t)

Since TRi(t) and Tai (t) are assumed to be independent and

conditionally Gaussian random variables, Eq (2.42a) becomes

Pe(t) = l-Er (Aid] Pdi(t) (2.42b)

m e A(t)

where A and Erf (A ii) are defined following Eq (2.30b)

(iii) The average accumulated reward, R(t), is the average total

reward earned upto the present time t. It is an overall

response measure, and is given by

t dP ci(a)

R~t) = ri(t) max (0., do do (2.43)

0 i A(t)

(iv) Normalized incremental reward, W (t) is the average instan-~c

taneous reward-earning rate, and is a measure of instantaneous

performance. Thus, W (t) is the weighted sum of completion
c

probabilities given by

wi t he (t) Pci(t) (2.44)
C K ~i e A(t) i c

~where K is the system capacity (=5).
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(v) Totai expected tasks completed, R can be computed by
C

assuming that all tasks i e A(t) with Pci(t) > a( .99)

are successfully acted upon. Thus,

R= 'I EA t [~(t041 dt (2.45)
0 1 A(t)

where 6[Pci(t)-0] is the Dirac delta function and T is the

duration of the experiment.

(vi) Average time spent on a task on line i, Tsi is the time the

human attends to task i on the average. It is given by

tfi

Tsi J Pdi(t) dt (2.46)

t i

where t and tfi are the times between which a task is on

line i.

In the next chapter, model predictions of the above response mea-

sures are compared with the experimental results for the conditions A, B,

C, D and By

2.8 Summary

In this chapter, an analytic model of human task sequencing perfor-

mance was developed. The modeling approach borrowed from the successful

optimal control modeling methodology. The approach taken here and in

[0] is quite general, flexible and covers all cases where the present

decisions affect future information and future rewards. As with the OCM,

the dynamic decision model (DDM) developed in this chapter consists of

two separable blocks: information-processor and decision-maker. The

information-processor compensates for the human's observation noise,

I
h]
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time-delay and monitoring allocations to produce the best linear unbiased

estimates of the "decision state". The conditional Gaussian statistics

of the decision state constitute a sufficient statistic of the decision

process. The statistics, along with the task values, are used in a

myopic decision policy, based on semi-Markov decision process theory, to

determine the attractiveness measure of each of the decision alternatives.

The measures are subsequently used in a stochastic choice model, that

explicitly considers human's inability to discriminate precisely, to

generate the decision probabilities.

Some novel features of our modeling approach are in the use of the

concept of a decision state; the explicit incorporation of human limita-

tions at the information-processing and decision-making stages; and its

suitability to assimilate new elements of the task as they become con-

sidered and understood. The last item corresponds to such issues as

precedence restrictions, resource constraints, general reward structures,

non-stationary task characteristics, and even different experimental

paradigms that involve the basic ingredients of monitoring, information-

processing and dynamic decision-making. Moreover, the model may be used

in a covariance propagation mode or in a sample path mode. The first

mode is appropriate for model-data validation efforts presented in

chapter III. The second mode is suitable for decision-aiding as discussed

in chapter IV.
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III. MODEL-DATA VALIDATION STUDIES

In chapter II, the dynamic decision model (DDM) of human task

sequencing performance was developed, and the model's ability to generate

various response measures of interest, viz., Pdi(t),P ci(t),Pe (t), etc.,

was noted. The present chapter proposes several metrics for assessing

the "goodness of fit" (or "similarity") between the model predictions and

the experimental data, and presents results on the model-data validation

efforts.

3.1 Data analysis

As mentioned in section 1.5, the data sampled during each run con-

sisted of the subject's decisions, di(t); the task completion status,

c it); and the error sequence, ei(t). These raw data were ensemble

averaged to obtain empirical estimates of the following response variables:

M) The dcision probabili-ty, PH (t), of acting on a task of line

i at time t,

Nb  NRj

a Rj
Sk

H W J-1 k=l (3.1)Pdi~t N
s

J-1

where

N - total number of subjectss

NRJ = total number of runs of subject J

62
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and

I if subject j was processing a task on line i

$at time t during run k

d dk1 (t)

g,0 otherwise

(i) The co etion probability, Pci(t) of having completed a task

Ion line i by time t,

NS NRJ

c2 kc1 (t)
PH(t) J=l k=l (3.2)
ci N

s

J=l

where
1 if subject J has completed task i by time t

ckj(t) =during run k

0 otherwise

Clearly, P i(t) is a monotonically increasing function of

time. It is reset to zero at the end of the opportunity

o window of the present task on line i, i.e., before the arrival

of the next task in the sequence.

(iii) The error probability, P (t), of engaging a task which can not
e

possibly be completed, was calculated from the data via

5 Ns  NRj

1-I J ' k j

P H (t) i-1 J-1 k-l (3.3)

e N

J.1

! R

I j-l
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whe re I if subject j was acting on a task of line i

at time t during run k that can not be suc-

kj cessfully completed

0 otherwise

I (iv) The average accuuated reward, RH (t) earned through time t is

related to PHi(t) via an expression similar to Eq (2.43).

(v) The normalized incremental reward, WH(t) earned by the human is

i given by an equation similar to Eq (2.44).

(vi) The number of expected tasks completed, Nc(t), was computed

j from

1N S N R 5 N T i c k t t f j

RH(t )  - k-l i-l J-1 (3.4)
c N

S

Nkm

where c is as defined in Eq (3.2), NT, is the total number
i

of tasks that appear on line i, and tfij is the time at which

a task j of the sequence (i.e., J-th pass) on line i reaches

- the end of its opportunity window.

(vii) The average time spent on a task on line i that arrived at

time toi j and (would have) departed at time tfi j during the

J-th pass is given by a relation similar to Eq (2.46). That

*1 is,

fijN 1 t ii
I WtP Hi(t) d j ; 1,...,5

Oj 
J-T,2,...i,NT 

(3.5)

I
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where NTi is as defined in Eq (3.4).

3.2 Measures of Similarity

In order to assess the closeness of model vs. data results and to

perform sensitivity studies on the model, it is necessary to define

1"closeness". In this section, we propose several time-history and scalar

measures of similarity, which are subsequently used as a means to validate

the model.

3.2.1 Time-history Metrics

These measures compare the ensemble-averaged time-history of a

response variable obtained empirically with that predicted by the DDM.

Here, we formulate five time-history metrics that appear to be suitable

in the present multi-task decision paradigm.

(i) The decition probability comparisons P H(t) versus
Pdi (t) ;i=0,i,2,... ,5.

(ii) The completion probability oomparisons PH (t) versus
Pci (t) ;1-1,2,... ,5.

S(iii) The normalized incremental reward comparisons, W(t) versus
," WM(t). Equivalently, the difference (WH(t) - WM(t)), or the

rms difference W cr(t) given by

21/2I.I
may be used as a measure of similarity.

-- M
(Iv) The accwnulated reward comparisons, R (t) versus R (t).

(v) The error probability comparisons, P H (t) versus P M(t).e e

3.2.2 Scalar Metrics1

Below, we propose tx scalar metrics that appear to be pertinent

in the multi-task paradigm. The suggested scalar measures are useful in

... .....
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the model-data validation studies, as well as in understanding the impact

of changes in various model parameters on the DDM predictions.

(i) Action mtric, AM computes the normalized time integral of the

squared error differences between the decision probabilities

* PH (t) and i(t). That is,

Udi di

AM = -(t) - P di(t dt (3.7)

I where T is the duration of the experiment. The square root

of AM is a measure of the average discrepancy between PdH(t)

and PM (t).

(ii) Incremental Reward Metric, IRM is the normalized time integral

of the squared, weighted difference of the completion proba-

bilities PHi(t) and PiMI(t) given by

5 f Tjr(t) (P H (t) - P M (0)] 2 dt

I ii (3.8)

r f r (t) dt

The square root of IRM is a measure of the difference between

the average reward-earning rates of the human and the model.

(iii) Accumulated Reward Metric, ARM is the normalized time integral

of the squared difference between the average reward earned

1 upto that instant of time by the human and the model. There-

fore,

Y] f (t) (t- Id

ARM 0 2 (3.9)

Ri
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where R is the maximum available reward during the run.

The square root of ARM is a measure of discrepancy between

the average overall performance of the model and the human.

I (iv) Task Conpletion Metric, TCM computes the normalized squared

I differences between the average number of tasks completed by

the human and the model as 2

1TCM - -M- R (3.10)

I where Navt is the total number of available tasks during the

I experimental run.

(v) Averaqe time on each taek metric, ATTM calculates the normal-

ized root-mean-squared sum of the difference between the times

spent on each task by the human and the model according to

I N Ti/H 1-'l j -  il(t

ATTM- - Rij oij (3.11)
NtNavt

where NTi is defined in Eq (3.4) and TRij (toi j ) is the initial

(actual) processing time of a task on line i during the J-th

pass.* i
(vi) error probability metric, EPM is the normalized time integral

of the squared differences between the error probabilities

I H
SW(t) and PM(t) and is given by

1 2

EPM H -P dt (3.12)
0 10

I Note that the normalized scalar measures can range from a

S I value of 0, corresponding to a perfect fit between the model

and data, to a maximum value of 1.I
I

j
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3.3 Model vs. Data Comparisons

I The application of the DDM to generate predictions of various

response measures is straightforward, once we specify the parameter set

, , c, TRO}. From experience with the OCM, we choose

T - human's time-delay = 0.2 sec

P1 = observation noise-to-signal ratio - 0.01 (i.e., -20db)

After a sensitivity study was made on the DDM, we selected the remaining

parameters as

c - co-efficient of variation - 0.3 (see Eq. (2.40))

TRO - "fictitious" processing time - 3 sec (see Eq. (2.35))

The parameter set was held constant across experimental conditions. In

all cases, the subjective values q are chosen to be the objective

rewards r . Pertinent data on task attributes, viz., arrival times,

processing times, values and velocities, for the experimental conditions

A, B, CD and B may be found in Ref. [10].y

The five time-history metrics generated from the data and the model

are compared in Figs. (11-35) for the five experimental conditions A, B,

C, D and B . The ensemble data were obtained by averaging over NR runs
y

i ](e.g., NR - 48 for condition A). The results show striking similarity

between the data and model predictions. The model-data match is uniformly

I "good to excellent for all the five experimental conditions studied. This

is most noteworthy considering that a no minal set of parameters were used

, |throughout, and that the decision problem involved is complex. To be

" 1 sure, there are some diacrepancies, as in decision probability (P

comparisons: they show that the model predictions edhilit rapid varia-

IJ tions when compared to the data. This discrepancy is likely a result ofI'
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human inertias, e.g. neuro-muscular lags, decision time losses, etc. It

j can be corrected by employing subjective values that depend on previous

actions, or by incorporating a switching cost in the attractiveness

i measure of Eq (2.37). Since the discrepancies were not major in terms of

the overall performance comparisons RM(t) vs. RH (t), and since our focus

was on developing the structure of human decision model rather than the

I fine-tuning of it, these modifications were not explored in detail.

The average times spent on each task by the model and the human,

along with the six scalar measures of similarity for experimental condi-

tions A, B, C, D and B are displayed in Tables 1 through 5. They alsoI y

indicate a reasonably close agreement between the model and data results.

*i Pass

Line 1 2 3 4 5 6

1 2.659 1.603 2.767 0.361 3.233 0.313

(2.619) (1.464) (2.607) (0.321) (4.155) (2.155)

2 5.510 4.132 3.619 3.763 1.922 2.454
2 (5.333) (4.167) (3.976) (3.500) (1.690) (2.417)

3 1.763 1.603 1.909 1.319 3.614 4.693

3 (1.583) (1.631) (3.250) (2.643) (3.833) (4.548)

4 2.022 3.588 1.921 4.532 2.549 5.551
4 (3.417) (4.071) (1.607) (4.167) (2.726) (3.929)

1. 763 3.812 3.531 4.645 2.769 1.582
(1.536) (3.607) (3.500) (4.440) (2.583) (1.631)

i. TAB7,E la: AVERAGE TIME SPENT ON EACH TASK IN EACH PASS FOR

I CONDITION A (Brackets: Data)

SCALAR MEASURE VALUE

AM 0.05569

IRM 0.05421

SARM 0.00018

TCM 0.00019

I ATTM 0.0431

L EPM 0.05867

* TABLE lb: SCALAR MEASURES OF SIMILARITY FOR CONDITION A
(A Value of 0 Corresponds to a Perfect Fit)

0 i
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I

I Pass
Line 1 2 3 4 5 6 7

1 2.792 2.121 2.494 4.491 1.828 4.346 1.020

(3.010) (3.615) (2.625) (4.281) (3.042) (4.062) (0.062)

l5.582 1.514 3.547 4.213 2.428 4.467

(4.771) (1.823) (3.708) (3.781) (2.375) (4.115) .528

3 1.762 1.659 3.379 5.557 1.267 2.176 2.539
(1.615) (1.573) (3.521) (4.385) (1.656) (2.458) (0.802)

4 1.585 3.473 1.427 3.357 3.379 0.560
(3.385) (3.104) (1.427) (3.573) (3.323) (1.229 ( - )

1.364 3.542 1.376 2.409 2.376 1.376
(1.740) (2.906) (1.677) (2.573) (2.510) (0.917) (-

TABLE 2a: AVERAGE TIME SPENT ON EACH TASK IN EACH PASS FOR CONDITION B
(Brackets: Data)

l

SCALAR MEASURE VALUE

AM 0.06656

IRM 0.09250

1 ARM 0.00019

I TCM O.028x106

I ATTM 0.06706

EPM 0.00933

I
: TABLE 2b: SCALAR MEASURES OF SIMILARITY FOR CONDITION B

I
I

I j

, , " I i I -II I * I ! ! -'..
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L i ae 1 2 3 4 5 6 7 8 9

1 3.744 0.202 1.239 3.251 0.019 3.665 3.613 0.040 1.306
(4.095) (0.905) (2.838) (0.811) (0.405) (3.270) (3.608) (0.514) (2.932)

2 0.810 3.651 3.245 3.541 0.300 3.387 3.766 1.235 -

(2.622) (2.905) (1.770) (3.486) (0.851) (3.419) (2.892) (0.486) -

3 3.520 0.166 3.738 3.288 3.672 0.491 0.030 2.640 -1 _______(3.392 (0.716) (3.608) (3.527) (3.541) (1.338) (0.230) (1.149) ( - )
4 0.023 0.173 0.077 3.402 0.152 3.292 0.244 --

(0.284) (0.892) (0.027) (3.676) (0.703)1(1.716) (0.027(-)(-)

5 3.566 3.755 3.699 2.288 3.513 3.377 3.094 --

I (2.865) (3.622) (3.635) (3.514) (3.635) (3.541) (3.459)(-)(-)

'CABLE_3a: AVERAGE TIME SPENT ON EACH TASK IN EACH PASS FOR CONDITION C

(Brackets: Data)

SCALAR MEASURE VALUE

AM 0.06676

:~ ~IRM 0.09269

ARM 0.00045

ITCM 0.00370

IATTN 0.07856

EPM 0.00200

TABLE 3b: SCALAR MEASURES OF SIMILARITY FOR CONDITION C
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Lie1 2 3 4 5 6 7 8 9

I-1 2.792 1.624 3.613 1.438 0.012 2.436 4.636 2.494 1.119
(3.031) (1.172) (2.734) (1.219) (0.016) (2.531) (4.344) (1.156) (1.531)

2 0.915 1.725 3.428 1.239 2.398 2.729 0.010 2.123 -

(2.547) (1.672) (3.313) (1.422) (2.344) (2.328) (3.359) (0.875)( )

1.761 1.044 2.688 2.677 4.227 0.019 0.076 3.029
(1.641) (2.516) (2.672) (4.391) (4.594) (0.531) (0.859) (1.109)_______________

4 0.962 0.374 0.026 3.502 2.296 1.587 2.268 --

(2.656) (0.953) (0.063) (3.563) (2.188) (1.500) (0.531)

5 1.494 3.71.3 1.474 2.783 3.0 .351 0.392 --1 ~ ~~(1.656) (3.406) (1.688) (2.688) (51) 2.750) (3.891) -)C-)

TABLE 4a: AVERAGE TIME SPENT ON EACH TASK IN EACH PASS FOR CONDITION D
(Brackets: Data)

SCALAR MEASURE VALUE

AM 0.08489

IRM 0.08151

1p ARM 0.00020

TCM 0.00122

ATTM 0.12574

EPM 0-00345

TABLE 4b: SCALAR MEASURES OF SIMILARITY FOR CONDITION D
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I

Line P-s 12 3 4 5 6 7
2.791 3.368 2.576 4.437 2.059 4.326 0.825(2.906) (2.750) (2.859) (2.875) (1.000) (4.328) (0.031)

2 5.543 1.495 3.513 4.428 2.292 4.220

(2.250) (1.859) (3.859) (4.656) (2.656) (3.766) ( )

3 1.371 1.205 3.439 5.272 1.398 2.380 2.074
(1.797) (1.672) (3.313) (3.656) (1.828) (2.859) (0.922)

i 4 1.889 3.273 0.802 3.344 3.328 1.919
(3.563) (3.016) (0.016) (3.719) (3.828) (0.125) ( )

1.546 3.275 1.541 2.377 2.352 1.227
(1.766) (3.281 (1.828) (2.703) (2.688) (1.266)

TABLE 5a: AVERAGE TIME SPENT ON EACH TASK IN EACH PASS FOR CONDITION B
(Brackets: Data)

SCALAR MEASURE VALUE

AM 0.06105

IRM 0.06944

ARM 0.00066

I TCM 0.00094

I ATTM 0.07897

EPM 0.00132

_ ItABLE 5b: SCALAR MEASURES OF SIMILARITY FOR CONDITION B
p y

k

II,.
I .. .
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3.4 Sensitivity Analysis of the DDM

Sensitivity studies were made on the DDM with respect to the para-

meter set 0. The study showed that the model predictions exhibit greater

I sensitivity to the parameter c, the co-efficient of variation, than to

i the remaining parameters T, Pit TR0 " Therefore, only the results of

varying the parameter c are presented in detail for experimental condi-

tions B and D, and results for the other parameters and the discount

factor, cv are briefly summarized.

I (i) Variations of co-efficient of variation, c: The parameter

Ic was varied in the range 0.1 - 1.0 and the model predic-

tions of percent reward earned, percent tasks completed and

i the scalar measures of similarity are plotted in Figs. 36

and 37 for the experimental conditions D and B, respectively.

I As the value of c increases, the percent reward earned and

the percent tasks completed by the model decreases. This

I is because the model allocates attention equally among tasks

," .t high values of c. This results in a reduction in the

number of tasks being completed and, hence, the reward, since

the value is credited only at the end of a successful task

completion. The tendency of the model to uniformly allocate

attention among tasks at large values of c, causes a decrease

in the measure AM. Ha.ever, all the other measures of

similarity, IRM, ARM, ATTM and EPM, generally increase with

Incrta.sing c. Note, in particular, that ARM, which is a

ITte measure TCM is not shown, as it is similar to comparing percent
I tasks completed by the human and the model.
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measure of overall performance of the model, exhibits good

sensitivity to c when compared to IRM, which is a measure of

2 iincremental performance. Overall, the results indicate that

a value of c in the range 0.3 + 0.1 gives a good fit to the

experimental data.

(ii) Varitions of time-delay, T: As time-delay increases, the

uncertainty associated with the estimation of the decision

state increases. This, in turn, leads to a smaller number

I of tasks being completed, and smaller reward being earned.

> "The measures AM and IRM were found to be relatively insensi-

tive (within 10 percent) to time-delay variations in the

range 0.15 - 0.50 sec, wheras ARM was quite sensitive to 1.

Also, the measures ATTM and EPM exhibited modest increases

with time-delay. The overall results indicated that a value

I of I in the range 0.20 + 0.05 sec is the best choice, a

range consistent with that employed in the OCM.

I (iii) Varitions of discount factor, c: As a increases, the model

allocates attention to tasks with small processing times.

f This results in a decrease of total reward earned, although

.~ | the number of tasks (of less value) completed may increase.

The measures AM, IRM and ATTM generally increase with a,

whereas the overall measure ARM is insensitive (within 10

percent) to variations in the discount factor, Overall, a

value (f a z 0 was found to give the best possible match to

the data. Therefore, the parameter a was discarded from

the model.

I
W,

" I
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(iv) Variations of observation noise ratio, p1 : The model

I response was relatively insensitive (within 10%) to observa-

tion noise ratio in the range -15 db to -25 db. However,

I the results showed some perplexing trends. At high values

of Pi (i.e., less negative), the model earned more reward

and completed more number of tasks than at low values of pi *

I Therefore, the measures IRM and ARM decrease with increases

in p,, but the measure AM appears to increase slightly. This

Iapparent anomaly may he due to complex interaction between 0
and the co-efficient of variation, c.

(v) Variations of "fictitious" processing time, TRO; As TRO

I increases, the attractiveness measure, M0 (t) becomes more

negative. This reduces the "do nothing" probability, Pdo(t)

and results in a non-decreasing total reward. A value of

T 3 to 5 sec was found to be a reasonable -hoice in the

present experimental context.

The above sensitivity results show that the choice of the parameter

set 2 is not crltic'al, at least within a reasonable range of variation.

However, future research could determine whether or not the parameter set

remains constant with modified decision paradigms, such as those suggested

" 1in section 4.1.

3.5 Comparison with other Decision Models

Since the decision situation basically involves dynamic sequencing

I of tasks under uncertainty, a logical question is: "Couldn't we have

Iused one of the many sequencing rules that appear in the scheduling

literature [28] to model human decision strategy as effectively as the

* 1 I)DM?" In this section, we answer this question in the negative by

comparing the DDM with four heuristic sequencing rules of scheduling

. |

I
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theory. We also contrast DDM with two other decision rules, which may

be interpreted as special cases. The results illustrated here are for

condition D only, but they are representative of the other conditions as

well.

3.5.1 Comparison with Heuristic Sequencing Rules

The following four decision rules were selected for comparison

I with the DDM:

Mi Weighted shortest renlwining processing time (WSRPT) rule:

1 At any time t, this rule chooses a task with maximum

[r.(tOJT Ri(t)]. Some advantages of WSRPT rule are: (a)

It minimizes the weighted completion times as well as the

I weighted waiting times of tasks being sequenced, and (b)

It does not require any look-ahead features, even though

I tasks become available intermittently, i.e., it is a

dispatching decision rule. The major drawbacks of this

rule are: (a) it stipulates a (1,0) type of decisions

and does not consider randomness in human response; (b)

it does not take into account the time available to work

I on a task, although it does minimize average lateness of

I tasks (if allowed to work even after deadline has ex-
*ceeded); Cc) It assumes that T Ri(t) is deterministic; and

* (d) it discriminates among tasks to the greatest possible

extent, resulting in increasingly excessive waiting time

* I for low priority tasks. The first two cited limitations

of WSRPT are removed in the decision rules (ii) and (iii),

respectively.

1(ii) WSRPT with stochastic choice: This rule is similar to

I
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(1), except that it employs Luce's choice axiom to render

I the decision rule random as in the DDM.

(iii) Modified WSR1: At any time t, this rule selects a task

" with maximum [ri(t)iTRi(t)].u[Tai(t) - TRi(t)], where u(.)

i is a unit step function. This rule is similar to (i), but

take:. into consideration the time available to work on a

.1 task via a unit step function involving slack time,

, (Tai (t) - TRi (t)).

(iv) Weighted Slack time (WST) rule: At any time t, this rule

selects a task with maximum [ri(t)1(T ai(t) - T(t))]. This
!"i

scheme is often used with WSRPT sequencing to overcome the

I limitation (d) of WSRPT rule.

Table 6 compares DDM performance with those of the heuristic se-

i quencing rules (i) - (iv) via the scalar measures of similarity for the

experimental condition D. The figures in brackets display the percent

I
decrement in performance of a heuristic sequencing rule, using measures

i for DDM as a base. The results clearly indicate that the performance of

DDM is significantly better than the sequencing rules (i) - (iv). It

1 should also be noted that WSRPT rule with stochastic choice does better

than a pure WSRPT, thereby confirming randomness in human decision be-

havior, as well as the inadequacy of Monte Carlo models of the type

1 espoused by Tulga 18]. These results also cast doubt on models that

assume perfect human perception of the task attributes.

13.5.2 Comparison with Related Decision Models
S

Several decision models that are derivatives of the DDM were

studied; two particularly interesting ones are discussed here.

N I
- i ' ' : L r - ' .. = ..': - . . - ' '
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(i) Related model 1: This model assumes that the subjective

I looses, qt(t), are zero. Thus, the attractiveness measures

of Eqs. (2.35) and (2.37) become, respectively

M 0 (t) -0
* (3.13)

I Mi(t) = ri(t) n1 (t) ; i EA(t)

(ii) Related model 2: In this model, the attractiveness measures

are given by

M(t) = - (t) PIT (t)< T

jA(t) I a - ROI

j (3.14)

M (t) = r.i(t) PIT Ri t).< T Ci t), r P1T aj(t) <T it
I jfLA(t)

This model may be derived from Eqs (2.35) and (2.37) by

letting all the available times Ta (t) i, m#j while com-
am

puting 0ij, and setting Taj = oO, i#j in evaluating ni(t).

The form of the attractiveness measures in Eq (3.14) is

similar to those of "information-integration rules" of be-

havioral decision theory [2]. A notable feature of this

model is that it affords simple computation, and does not

require any (numerical) approximations in its evaluation.

The results of Table 7 show that the simplified models perform

1 almost as well as the DDM. Model I matches the data well with respect

to measures AM and IRM, but performs poorly with respect to error pro-

babilty measure, EPM. In fact, this is what motivated us to include

the subjective losses in the attractiveness measures.* ' I
4[

I
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3.6 Summary10

This chapter described the results on model-data validation efforts.

In order to validate the model, several time-history and scalar measures

I of similarity between the model predictions and the experimental data were

g proposed. The model-data validation effort consisted of comparing the time-

history metrics, such as the decision probabilities, completion proba-

bilities, incremental reward, accumulated reward and error probability.

Validation on the basis of scalar measures consisted of comparing the

U average time spent on each task, the difference between the incremental

I and accumulated rewards of the model and data, etc.

When viewed in total, the model-data comparisons for all the cases

j studied are excellent. This is achieved with a simple, intuitively

appealing decision model, using a nominal set of parameters throughout.

I To be sure, there are some discrepancies, as in decision probability

comparisons. However, these mismatches are not major, and can be

corrected by minor model modifications. The model predicted trends

I generally agree with the data.

Sensitivity analysis of the DDM has shown that the choice of the

- I parameter set is not critical, at least within a reasonable range of

variation. The performance of DDM was contrasted with those of several

heuristic sequencing rules of scheduling theory, as well as some related

I decision models. The results point to the clear superiority of the DDKi in

representing human task sequencing performance.



I IV. DISCUSSION AND EXTENSIONS

1 The primary purpose of this research has been to gain an understand-

ing of human information-processing and task selection procedures in dy-

namic multi-task environments. The approach has been to combine the

results of a joint analytic and experimental program into a normative

dynamic decision model (DDM) of human task sequencing performance. To

I this end, a general multi-task paradigm was developed that retains the

essential features of human task selection in a manageable, yet manipula-

tive, context. Via this framework, we have studied the effects of various

I task related variables on the human decision processes. The model that

has emerged from this effort could form a small, but significant, step

1 towards human modeling in complex supervisory control systems. In the

following, several suggestions for further research are given. These

include model refinements, model application to decision-aiding and the

I modeling of multi-human decision-making in multi-task systems.

4.1 Modifications of the Decision Paradigm

* I The concept of a decision state is fundamental to our analytic

modeling approach. The human's decision strategy depends directly on his

estimates of the decision state, once the task values and a performance

I metric are given. In the present experimental context, the decision state

is related to the task state via a simple functional transformation. Also,

the tasks are assumed to be independent and the task values are constant

as the bar moves across the CRT screen. This simplicity in the experimen-

tal paradigm enabled us to develop the DDM by focusing on the underlying

I1.07



I 108

structural aspects of the human decision-processes, without the attendant

I task complexities. However, the future tests of DDM should consider more

intricate task structures, such as those involving non-stationary task

attributes, task dependency and resource constraints. These and other

I extensions are described below:

(i) Non-stationary task attributes: In many realistic situations,

I the task attributes (e.g., value and velocity) may evolve in

time, or they may vary as a function of human's decisions.

I For example, a AAA gunner who fires at an enemy target may

I find that the target has changed course and is diving towards

the gunner's position. This results in a change of target's

value and the time available to engage the target. The pres-

ent experimental paradigm can be modified to include time-

varying task characteristics in a straightforward manner.

However, the analytic framework of the model is valid almost

in toto for this case.

(ii) Task dependency: Since the subsystems are interconnected

physically in a complex system, the tasks are, in general,

correlated. This correlation may assume the form of preced-

ence relations and/or dependency among the attributes of

different tasks. Precedence relations pertain to the exist-

ence of technological restrictions on the task sequence, or

the partial ordering among the tasks. The precedence rela-

tions generally take the form of an assembly tree or a

branching tree. A relevant example of such a situation is

the problem of multi-RPV control, where some RPVs (e.g.,

ECM) must be brought over the target area before the others.
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This situation can be incorporated into the experimental

paradigm by not allowing the subject to engage certain tasks

until he has successfully completed their prerequisite tasks.

In this case, the analytic modeling of the decision process

I involves a two step procedure in which sequencing phase is

preceeded by a labeling phase that identifies feasible action

I subsets. Thus, only the set of feasible decisions, V(t),

along with any human limitations (e.g., loss of decision time

Iin the labeling phase), need to be identified. On the other

fhand, the task correlations due to dependency among the

attributes of different tasks can be incorporated in the form

of coupled subsystems in a state space formulation. This

will undoubtedly increase the computational complexity of the

model. Hopefully, only a small number of tasks have such

interactions.

(iii) Resource constraints: In practice, resources, such as fuel

and ammunition, are finite. Since the availability of

resources has implications in the human decision-making

processes, future research should investigate human decision

behavior with resource constraints. In the present experi-

mental paradigm, a displayed resource may be the total time a

subject can expend in processing tasks. This research could

delineate the nature of differences in human behavior under

constrained and unconstrained situations.

(iv) A Related Paradigm: Although the present experimental para-

digm is well-suited to understand the basic issues of a multi-

task decision problem, it is far too abstract to be of use in

1
ii
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a specific application. A means to overcome this limitation

and, at the same time, be close to the manual control para-

digms is to design an experimental situation wherein human

I interacts simultaneously with several dissimilar dynamic

I processes. The task characteristics can be manipulated by

varying the nature and occurrence of disturbances acting on

I the processes. This experimental paradigm is ideally suited

to study all the issues of a multi-task decision problem, viz.,

I task detection, task sequencing and task implementation. The

* conceptual framework of the DDM is still valid. The modeling

1 process poses interesting, albeit solvable, control theoretic

I problems.

4.2 Computer-aided Decision-making

I With rapid advances in technology and higher levels of automation,

computers are increasingly being used in decision-making situations. If

the computer is to be accepted by human as a decision-aid, or if decision-

f making responsibility is to be allocated between human and computer, then

there must exist a symbiotic relationship between the two. Computer-made

decisions and/or information displays should be compatible with human

* processing goals, implying that the computer would require a model of the

human! Successful interaction between human and computer could reduce

* human work load, increase probability of correct decisions and reduce

system risk.

1 The DUM developed in chapter 11 is used in a covariance propagation

mode to predict enseiqble or averaged statistics of human response. How-

3 ever, for decision-aiding applications, one need. a Monte Carlo (or

* I sample-path) simulation of the model. The implementation of the sample-

path version of the DDH is similar to that of 0CM [31]. That is, the



model mimics the human actions, complete with random number generators

that reproduce inherent human randomness. The simulation generates time-

histories of human decisions in response to any given task arrival pattern.

Using a Monte Carlo model, one can study the potential application of

I computer-aiding at various levels as outlined below:
Mi Information-processing mode: In this mode, the computer,

I using a model of the human or its own internal model, displays

information relevant to decision-making. The displayed infor-

I mation can be of various types: an assessment of the present

and, possibly, future task states ("raw data") or of the

decision states ("reduced data"); or the detection of new

I tasks while human is attending to a task. Note that, in this

mode, the computer provides information at the pre-decision

I level. If this type of aiding is to be effective, the infor-

mation must be accessible in real time, and it must reduce

memory load of the human.

J(ti) Decision-prompting mode: In this mode, the model provides the

human with guidelines for making a decision so that he can

I concentrate on few vital decision alternatives. The comput-

erized model may be exercised to rank-order the importance of

various decisions via the attractiveness measures. These

I metrics are used only as prompting information with the DM

free to select any of the alternatives. If the model is

truly representative of human decision-processes, there should

be high correlation between human and computer decisions.

Moreover, this mode of aiding may be used to investigate the

I human's ability to detect decision blunders by the computer*

and it may answer the important question: Should a machine, in
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order to help or replace us, act like us?

I (iii) Decisioin-sharing mode: In situations where the human poten-

tially encounters more tasks than he can satisfactorily per-

.1 form, allocation of decision-making responsibility between

I human and computer may be the best mode of human-computer

interaction. In order that the human-computer interaction be

efficient, the actions of the computer must be transparent to

the human, and the computer should be able to infer what the

human is doing. Thus, a model of the human allows for covert

communication between the human and computer, and reduces the

need for overt communication. Moreover, a model of the human

can be used to predict future courses of action by the human

so that the computer can strive to avoid them. This results

in a reduction of conflicts, a particularly desirable feature

under high work load situations.

4.3 Multiple Human Decision-makers

The study of a multi-task system with multiple decision-makers can

be approached at various levels of complexity. The analytic framework of

the 0DM can be extended, at least conceptually, to a centralized decision-

making system In which tasks arrive at a central supervisor vho, in turn,

r routes them to various subordinate decision-makers. The individual

decision-makers have the responsibility of sequencing tasks in their

respective queues. The overall decision-process involves finding a global

* - routing strategy for the supervisor and local sequencing strategies for

- the individual subordinates, taking into account inherent and interhuman

randomness.

A more realistic and challenging problem is the modeling of multiple

DMs in distributed multi-task systems. Here tasks arrive at each iradivid-

12
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ual DM. An individual DM has to determine whether to keep an arriving

task for himself or send it to someone else; and which task, if any, he

should process. Thus, the decision-process requires the specification of

I a local routing strategy and a local sequencing strategy for each DM. The

g decision process is affected by the communication, information-pattern at

each DM, hierarchical structures, inter-human randomness and variability,

I to name but a few.

4.4 Summary

I In this chapter, we have delineated three logical extensions of the

present research. The first relates to exercising the model in more com-

plex multi-task situations such as those involving non-stationary task

attributes, task dependency or resource allocation constraints. This

research serves to refine and validate the DDM. The second extension

I seeks to use the model for studying computer-aided technology. In this

context, three modes of interaction between the human and computer are

identified, viz., the information-processing mode, the decision-prompting

mode and the decision-sharing mode. It was concluded that in all modes

of operation, computer must haveas a reference,an internal model of the

I human for effective man-computer interaction. Finally, the third exten-

sion relates to developing models suitable for multi-task systems with

multiple decision-makers. This research poses problems of immense

analytic difficulty, but, if solved, will be extremely useful in under-

standing the human component of a complex supervisory control system. It

I is hoped that future contributions will be along these lines.I
a!
p!
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I APPENDIX A

LUCE'S CHOICE AXIOM

The observed inconsistency and uncertainty associated with human

decision behavior have led to two classes of probabilitistic choice

models. These are the random utility models and the constant utility

models. The random utility models (called the "discriminable dispersion

I models" by psychologists and "probit analysis" by statisticians) assume

that the utility, or the value, of each alternative is intrinsically

variable at the subjective level, and that the alternative with the

highest momentary value is chosen. Thus, in these models, the uncertain-

ty in choice is attributed to the randomness in utility. The constant

I utility models, on the other hand, assume that the value assigned to each

of the alternatives is fixed, but that the choice is a probabilistic

function of these values. Here, the randomness in choice is attributed

I to uncertainty in the decision rule. Although these two types of choice

representation are very different in psychological terms, they are some-*1
what compatible in mathematical terms. This is because some forms of

probahilistic choice models can be interpreted as either random or con-

stant utility models [24,25].The random utility models have their origins

in the works of Thurstone on psychophysical scaling 131] and later Block

and Marschak on probabilistic theories of response [32], whereas the

i constant utility models have largely been influenced by Luce's choice

axiom f24-271.

! Luce's choice axiom is a probabilistic formulation of Arrow's [331

, 111.4
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famed "law of irrelevant alternatives". The axiom, in essence, says that

our preferences between two alternatives (stimuli) do not change when

other alternatives are added to, or discarded from, the overall set of

I alternatives. The axiom has been invoked implicitly or explicitly, in

psychophysical scaling, utility theory, decision theory, stochastic

learning theory and in many psychometric models. This is because of its

simplicity and thu resulting computational attractiveness. In the fol-

lowing, the axiom is formally stated and its implications for developing

I a stochastic choice model are discussed.

A.1 Notation and Preliminaries

Let T = {x,y,z...} denote a finite set of independent alternatives

(e.g., x is the minimum value of some random variables associated with a

process state transition, x is the maximum attractiveness measure, etc.).

I We use A,B,C,... to denote the non-empty subsets of T. We let PA (x)

represent the probability of choosing an alternative x when only the sub-

set A of alternatives is offered to the DM. The usual probability

axioms are assumed to hold for all A. Clearly, PT(x) is the probability

of selecting x when the entire set T is presented to the DM and

PT(A) = P(x)

xEA

"4 For brevity, we let P(x:y) denote P{x,y} (x), the probability that the DM

selects x when asked to choose between x and y. Also, we assume that

P(x:x) = 1
-

A.2 Choice Axiom

S"The choice axiomt, in essence, states that the removal of some alter-

natives does not alter the relative probabilities of choice among the

1remainIng alternatives. That is, the presence or absence of an alter-

-1

-1
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native is irrelevant to the relative probabilities of choice between two

other alternatives, although the absolute values of these probabilities

will generally be affected. Formally, for all x C AC T

PA(x) = PT(x/A) (A.1)

I whenever the conditional probability exists.

The choice axiom says that the choice from the subset A is independ-

ent of what else may have been available. In other words, even when the

Ientire set T is offered to the DM, if we only look at those occasions
when the choices are made from the subset A, then the probability of

selecting x from A, PT(x/A), is identical to the probability of selecting

x from A, P A (x), when only the subset A was presented to the DM in the

first place.

By the definition of conditional probability,

PT (x,A) PT(x)
PT(x/A) = PT(A) = PT(A)

Eq. (A.1) can be rewritten as

PT(X) = PT(A) • PA(X) (A.2a) i
or

*' PT (x)

P A(X= PT(A) (A.2b) iT
Eq. (A.2) provides an alternate interpretation of the choice axiom. It

says that the overall probability of choosing an element x from the set

T, PT(x), may be viewed as a multi-stage process. First, the probabiility

of choosing A from T, PT(A), is estimated, and then the probability of

choosing x from A, PA(x), is computed. Note that the subset A may bep|
subdivided a number of times until a single element x remains. More-

over, the axiom implies that the product PT(A) PA(x) is independent

lbl
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of the way in which T is partitioned into subsets! Clearly, intuition

suggests that the axiom can not be expected to hold in complex inter-

dependent situations. We will discuss the limitations of the axiom

later.

Below, we prove some trivial consequences of the choice axiom as a

prelude to deriving a stochastic choice model.

Lemma I

Suppose that the choice axiom holds for all A, x e A C T.

Mi) If P (x) #0, then PA(X) 0TA

(ii) If PT(x) 0 and PT(A) 0 0, then PA(x) = 0

(iii) If er(y) 0 and y # x, then PT(X) PT{y}(X)

Proof

() Since x E A, PT(x) #0 implies PT(A) # 0.
P T(x)

Thus, PA(x) = PT(x/A) = PT(A- 0 . PW

(ii) Since PT(x) = 0 and PT(A) # 0, PA(x) --p(-- -0.

(iii) PT(y) = 0 implies PT(T-{y}) 1

Using this and the fact that x 7 y, we have

PT(x/T-{y}) = PT(x)

By the chpice axiom

PT (x/T-{y}) = PT_{y}(X) PT(x)

The result (iii) shows that an alternative that is never chosen may be

removed from the set without affecting the choice probabilities. The

fact that this process may be repeated in any order, until all the choice

probabilities are positive, is guaranteed by (i) and (ii).

A.3 Stochastic Choice Model

Here, we prove that if the choice axiom holds, all the choice pro-

4.
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babilities are determined by the pairwise probabilities. In the fol-

I lowing, we assume, without loss of generality, that the choice probabili-

ties are positive.

ji Theorem 1

If for all x c T, PT (x) 0 0 and if the choice axiom holds for all x

and A such that x C A CT, then

( I) P(x:y) P T~' =X A3
i (i) PT(Y) PAWX

and

(ii) PT(x) + [y + P(X:y ) (A.4)

I yT-1x} )

Proof

I (i) By the choice axiom

! PT(x) P{i,y}(x) "T({x 'y})

- P(x:y) [PT(X) + P T(Y)]

.,so

: i T X[ - P(x:y)] = P(x:y) (Y)

SiNoting that P(y:x) I - P(x:y), we have

P(x:y) = PT(x)
I I PT(X ) !

The result can be extended to include any subset A C T that contains the

alternatives x and y. The condition in Eq (A.3) states that the odds of

j x being chosen over y from any set containing them equals the odds of a

binary choice of x over y. This, rather important, consequence of choice

I axiom is variously referred to as the independence from irrelevant alter-

natlvvs in economics and Clarke's constant Ratio Rule in psychology, since

it was independently proposed by Clarke [341.

"1
1
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I (ii) To prove part (ii), consider the term

P(yx) PT(x) PT(y)
1+ P(x:y) P W WI ycT-{x} yET-{x} T

(x) PT(y)

T
|1

The required result immediately follows. Eq (A.4) is similar to Eqs.

(2.30), (2.38) and (2.39). Other consequences of the choice axiom, such

1as stochastic transitivity and the existence of a ratio scale, may be

found in (24-271.

IA.4 Discussion

Luce's choice axiom provides a powerful means to construct a ration-

al, probabilistic theory of individual choice behavior. The empirical

evidence [271 suggests that It works very well in some situations, and

not so well in others. Here, we summarize the advantages and limita-

tions of the axiom, and indicate decision situations where it can pro-

fitably be applied.

The primary advantages of the choice axiom are that it allows for

easy computation of choice probabilities via pairwise comparisons, and

that it provides a simple means to add new alternatives or subtract from

iexisting ones. The latter also points to a weakness in the axiom in

that the independence of irrelevant alternatives is implausible in

situations where some of the alternatives are similar. This is exem-

plified by the often cited objection of Debreu (351 to the choice

axiom. Suppose, wu are choosing among a pony (x), a bicycle (y) and

another bicycle (z). That is, T =x,y,z}. Assume that all pairwise
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1other, one expects that PT(x) , while PT(y) - PT(z) - . Data

supports this intuition. However, if choice axiom is assumed to hold,

then all trinary choice probabilities equal -. This example shows that

two alternatives (x and y), which are equivalent in one context (i.e.,

P(x:y) -1) are not equivalent in another context (i.e., PT(x)#PT(y)),

contrary to independence of irrelevant alternatives. Thus, the applica-

tion of choice axiom should be restricted to situations where the alter-

I natives can be assumed to be distinct and independent, such as those in

the present work.

I
I
I

I
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